cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239795 a(n) = A239793(n)/2^(3*n).

Original entry on oeis.org

1, 3, 5, 21, 45, 11, 91, 45, 17, 1995, 3465, 115, 2925, 189, 145, 341, 1309, 1, 9139, 65, 2255, 148995, 108675, 1645, 270725, 21879, 583, 4389, 4959, 59, 1548729, 27027, 60775, 130985, 15525, 1065, 66047553, 2567565, 39, 2133, 56457, 1411, 8161615, 2639
Offset: 0

Views

Author

Peter Luschny, Mar 26 2014

Keywords

Comments

See A239792 for references.

Crossrefs

Programs

  • Maple
    b := proc(n) option remember; if n < 1 then 1 else
    -add(binomial(n-1, k-1)*bernoulli(k)*b(n-k)/k, k= 2..n)/2 fi end:
    A239795 := n -> denom(b(2*n))/2^(3*n):
    seq(A239795(n), n=0..43);

Formula

Let b(n) = -Sum_{2<=k<=n} (C(n-1, k-1)*Bernoulli(k)*b(n-k)/k)/2
for n>0 and otherwise 1. Then a(n) = denominator(b(2*n))/2^(3*n).

A239792 Numerator of b_{2n}(1/4), where b_{n}(x) are Nörlund's generalized Bernoulli polynomials.

Original entry on oeis.org

1, -1, 3, -61, 1261, -4977, 999645, -16820653, 288427601, -1975649524361, 250373334235999, -741069328361243, 2017175162278526957, -16484758150014378103, 1866091048556360006871, -747145289541069391049541, 558035966935526487401599645, -94004035636878314426017611
Offset: 0

Views

Author

Peter Luschny, Mar 26 2014

Keywords

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung, Berlin, 1924.

Crossrefs

Cf. A220412, A239793 (denominators).

Programs

  • Maple
    b := proc(n) option remember; if n < 1 then 1 else
    -add(binomial(n-1, k-1)*bernoulli(k)*b(n-k)/k, k= 2..n)/2 fi end:
    A239792 := n -> numer(b(2*n));
    seq(A239792(n), n=0..17);
  • Mathematica
    b[n_] := b[n] = If[n < 1, 1, -Sum[Binomial[n - 1, k - 1] BernoulliB[k] b[n - k]/k, {k, 2, n}]/2];
    a[n_] := b[2n] // Numerator;
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 28 2019, from Maple *)

Formula

Let b(n) = -Sum_{k=2..n} (C(n-1, k-1)*Bernoulli(k)*b(n-k)/k)/2 for n>0 and otherwise 1. Then a(n) = numerator(b(2*n)).
Showing 1-2 of 2 results.