This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239797 #30 Aug 21 2023 11:39:53 %S A239797 1,0,9,1,1,2,3,6,3,5,9,7,1,7,2,1,4,0,3,5,6,0,0,7,2,6,1,4,1,8,9,8,0,8, %T A239797 8,8,1,3,2,5,8,7,3,3,3,8,7,4,0,3,0,0,9,4,0,7,0,3,6,4,1,0,7,3,2,3,6,7, %U A239797 8,0,1,1,0,0,5,7,2,2,3,7,4,2,0,3,3,3,3,0,0,8,3,8,2,1,7,7 %N A239797 Decimal expansion of square root of 3 divided by cube root of 4. %C A239797 This is the principal square root of 3 divided by the principal cube root of 4. This number is the imaginary part of a complex cubic root of 2, namely -2^(1/3)/2 + sqrt(-3)/4^(1/3). (The other complex cubic root of 2 is the same except for the sign of the imaginary part.) %C A239797 An algebraic number of degree 6. - _Charles R Greathouse IV_, Apr 14 2014 %H A239797 G. C. Greubel, <a href="/A239797/b239797.txt">Table of n, a(n) for n = 1..10000</a> %H A239797 William Stein, <a href="http://sage.math.washington.edu/home/wstein/www/books/ant/">Algebraic Number Theory, a Computational Approach</a>, p. 69 (in the PDF), Example 6.1.1, or <a href="http://sage.math.washington.edu/home/wstein/www/books/ant/ant/node40.html">Discriminants and Norms chapter</a> (HTML). %H A239797 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a> %F A239797 2^(1/3)/2 = 1/2^(2/3) = 1/4^(1/3). %F A239797 (-2^(1/3)/2 + sqrt(-3)/4^(1/3))^3 = 2. %F A239797 Equals Product_{n >= 1} 1/(1 - 1/(6*n - 2)^2 ). - _Fred Daniel Kline_, Dec 19 2015 %e A239797 1.0911236359717214... %t A239797 RealDigits[Sqrt[3]/4^(1/3), 10, 100][[1]] %o A239797 (PARI) polrootsreal(16*x^6-27)[2] \\ _Charles R Greathouse IV_, Apr 14 2014 %Y A239797 Cf. A235362. %K A239797 cons,nonn %O A239797 1,3 %A A239797 _Alonso del Arte_, Mar 27 2014