A239812 Number of n X 1 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.
2, 5, 11, 25, 57, 129, 293, 665, 1509, 3425, 7773, 17641, 40037, 90865, 206221, 468025, 1062197, 2410689, 5471133, 12416905, 28180549, 63956625, 145151533, 329425881, 747642197, 1696797025, 3850933181, 8739811625, 19835272037, 45016761649
Offset: 1
Keywords
Examples
Some solutions for n=5: ..2....2....2....2....3....2....2....3....2....3....2....2....3....3....2....3 ..1....1....2....2....1....1....1....3....2....1....1....1....2....3....2....2 ..3....2....3....2....2....3....2....2....2....3....2....3....1....1....2....3 ..1....1....2....1....1....1....3....3....1....3....1....1....1....3....2....2 ..1....2....1....2....1....3....3....3....3....1....1....2....2....1....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A239819.
Formula
Empirical: a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3).
Empirical g.f.: x*(2 + 3*x + 2*x^2) / (1 - x - 2*x^2 - 2*x^3). - Colin Barker, Feb 21 2018
Comments