cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A239812 Number of n X 1 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

2, 5, 11, 25, 57, 129, 293, 665, 1509, 3425, 7773, 17641, 40037, 90865, 206221, 468025, 1062197, 2410689, 5471133, 12416905, 28180549, 63956625, 145151533, 329425881, 747642197, 1696797025, 3850933181, 8739811625, 19835272037, 45016761649
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 1 of A239819.

Examples

			Some solutions for n=5:
..2....2....2....2....3....2....2....3....2....3....2....2....3....3....2....3
..1....1....2....2....1....1....1....3....2....1....1....1....2....3....2....2
..3....2....3....2....2....3....2....2....2....3....2....3....1....1....2....3
..1....1....2....1....1....1....3....3....1....3....1....1....1....3....2....2
..1....2....1....2....1....3....3....3....3....1....1....2....2....1....3....2
		

Crossrefs

Cf. A239819.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3).
Empirical g.f.: x*(2 + 3*x + 2*x^2) / (1 - x - 2*x^2 - 2*x^3). - Colin Barker, Feb 21 2018

A239813 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

4, 23, 113, 582, 2981, 15266, 78188, 400542, 2051667, 10509067, 53831920, 275740995, 1412438656, 7234951864, 37059718148, 189831642853, 972377820507, 4980827553280, 25513377870835, 130687610786192, 669423377137934
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 2 of A239819

Examples

			Some solutions for n=5
..2..0....2..0....2..0....3..2....3..2....3..0....3..0....3..2....2..3....2..0
..1..3....2..3....2..3....3..2....3..2....1..2....2..0....1..0....2..3....1..0
..3..2....3..1....3..1....2..3....1..0....2..0....1..3....3..2....2..0....3..0
..1..3....1..0....3..2....3..2....1..2....1..2....1..2....3..2....1..2....1..3
..2..3....3..0....1..2....1..3....2..0....1..0....1..3....2..1....2..0....1..3
		

Formula

Empirical: a(n) = a(n-1) +16*a(n-2) +31*a(n-3) -8*a(n-4) -78*a(n-5) -45*a(n-6) +56*a(n-7) -32*a(n-8) +32*a(n-9) +16*a(n-10)

A239814 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

10, 132, 1480, 17552, 204779, 2405330, 28156167, 330152684, 3868656623, 45340827197, 531385036815, 6227630455564, 72986367133614, 855377894814551, 10024792297748632, 117487669001323549, 1376922218413007325
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 3 of A239819

Examples

			Some solutions for n=4
..3..2..0....3..2..2....3..2..3....3..0..0....3..2..2....3..0..0....2..0..3
..1..2..0....1..0..2....1..2..2....2..3..0....1..0..2....2..0..0....1..3..2
..3..0..2....3..0..2....3..2..0....3..1..3....3..2..3....1..0..2....3..1..3
..3..0..0....2..0..0....1..2..0....2..3..3....1..3..2....2..0..0....2..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +103*a(n-2) +305*a(n-3) -1576*a(n-4) -7517*a(n-5) +13822*a(n-6) +84263*a(n-7) -193487*a(n-8) -386588*a(n-9) +2125542*a(n-10) -2240531*a(n-11) -6903934*a(n-12) +24598571*a(n-13) -24037070*a(n-14) -20933507*a(n-15) +84761410*a(n-16) -76409880*a(n-17) -58972949*a(n-18) +191904430*a(n-19) -103074732*a(n-20) -119505780*a(n-21) +301528072*a(n-22) -71474328*a(n-23) -220257104*a(n-24) +158665984*a(n-25) -141276800*a(n-26) -317537024*a(n-27) -19131392*a(n-28) -71272448*a(n-29) -128999424*a(n-30) -20832256*a(n-31) -5177344*a(n-32) -4849664*a(n-33) +1048576*a(n-34) +524288*a(n-35)

A239815 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

24, 729, 18728, 510748, 13597573, 366379173, 9807771898, 263419973152, 7064275271994, 189566431524540, 5085635223031781, 136450277248685119, 3660861731265982119, 98220442090411319757, 2635213560025173917109
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 4 of A239819

Examples

			Some solutions for n=3
..3..0..2..2....3..2..3..2....3..2..3..2....3..2..2..0....3..2..3..2
..3..0..2..0....2..1..1..2....3..1..2..1....2..1..0..0....1..0..2..1
..1..0..0..2....1..3..3..2....2..1..1..1....3..2..0..2....3..0..0..2
		

A239816 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

56, 3951, 232272, 14544801, 884977259, 54668820459, 3347474694032, 205970817822022, 12641836066488239, 776862587801118702, 47711236158517841564, 2931070666588302434209, 180038209753070897538954
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 5 of A239819

Examples

			Some solutions for n=2
..3..0..0..2..3....2..3..0..3..3....2..3..0..3..2....3..2..2..0..0
..2..0..3..2..2....1..3..3..1..2....1..2..2..2..1....1..0..2..2..3
		

A239817 Number of n X 6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

132, 21602, 2912793, 418324402, 58232200212, 8243207656791, 1154988223050638, 162794110794893005, 22871029907841066549, 3218700464551459701771, 452563580936326395762181, 63663914001474387730433692
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 6 of A239819.

Examples

			Some solutions for n=2
..3..0..2..0..2..2....2..0..3..2..2..3....2..3..3..2..0..3....3..0..2..0..3..3
..1..2..2..0..2..1....1..3..2..0..0..1....2..1..1..2..3..3....3..2..0..2..1..1
		

Crossrefs

Cf. A239819.

A239818 Number of nX7 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it, modulo 4.

Original entry on oeis.org

312, 118253, 36627126, 12059066460, 3842974545029, 1246285848518417, 399696014140196630, 129035213192353255123, 41500218830682985410810, 13375093569069190733883673, 4305661324527210642658505946
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Column 7 of A239819

Examples

			Some solutions for n=2
..2..0..0..0..3..2..0....2..3..3..2..0..3..0....3..0..0..0..0..2..2
..1..0..0..2..2..0..3....2..1..2..2..0..2..3....3..0..0..0..2..0..0
		

A239820 Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

5, 23, 132, 729, 3951, 21602, 118253, 646306, 3532732, 19315270, 105601487, 577330665, 3156353205, 17256335056, 94343160597, 515789128277, 2819903064231, 15416868881838, 84286524854294, 460808121256380, 2519312876415017
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Row 2 of A239819

Examples

			Some solutions for n=5
..3..0..0..0..0....3..2..3..2..3....3..0..0..2..3....3..0..2..0..2
..2..0..3..0..3....2..0..1..2..2....2..3..2..0..1....1..0..2..0..1
		

Formula

Empirical: a(n) = 9*a(n-1) -28*a(n-2) +74*a(n-3) -181*a(n-4) +236*a(n-5) -261*a(n-6) +234*a(n-7) +200*a(n-8) -279*a(n-9) +104*a(n-10) -268*a(n-11) -36*a(n-12) +156*a(n-13) +104*a(n-14) -32*a(n-15) -16*a(n-16)

A239821 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

11, 113, 1480, 18728, 232272, 2912793, 36627126, 459870638, 5774508494, 72538478424, 911227478673, 11446501405086, 143789611879946, 1806288798172920, 22690641341877163, 285040443527806965
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Row 3 of A239819

Examples

			Some solutions for n=4
..2..0..0..3....3..2..2..0....2..0..0..0....3..2..0..0....3..2..3..2
..1..2..0..1....2..0..0..0....1..3..2..0....1..0..0..0....3..2..2..0
..3..1..3..0....3..1..1..2....2..3..2..2....3..2..3..2....1..3..3..1
		

Formula

Empirical recurrence of order 64 (see link above)

A239822 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

25, 582, 17552, 510748, 14544801, 418324402, 12059066460, 347095468871, 9991360194005, 287711413471266, 8284928413145004, 238566125657445992, 6869701227384114007, 197820645386511819554, 5696463550662058123697
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Row 4 of A239819

Examples

			Some solutions for n=3
..2..3..2....2..3..0....2..3..2....2..3..0....3..2..3....2..3..3....3..2..0
..2..3..0....1..2..2....1..3..2....1..2..0....1..2..1....1..2..1....3..0..2
..3..0..1....2..0..0....3..1..2....1..3..3....3..2..2....1..3..3....1..0..0
..2..1..2....3..1..2....1..2..2....2..3..2....3..2..0....2..0..3....3..1..2
		
Showing 1-10 of 14 results. Next