This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239826 #9 Aug 06 2014 02:24:18 %S A239826 1,2,4,4,6,8,8,8,10,12,12,16,14,16,19,16,18,20,20,24,22,24,24,32,26, %T A239826 28,31,32,30,38,32,32,34,36,36,40,38,40,43,48,42,44,44,48,51,48,48,64, %U A239826 50,52,55,56,54,62,56,64,58,60,60,76,62,64,74,64,66,68,68 %N A239826 Sum of divisors of n that are also suffixes of n in binary representation. %H A239826 Reinhard Zumkeller, <a href="/A239826/b239826.txt">Table of n, a(n) for n = 1..10000</a> %H A239826 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A239826 . n | divisors | . . . in binary | a(n) %e A239826 . ---+----------------+---------------------------+-------------------- %e A239826 . 10 | 1,2,5,10 | 1,10,101,1010 | 2 + 10 | 12 %e A239826 . 11 | 1,11 | 1,1011 | 1 + 11 | 12 %e A239826 . 12 | 1,2,3,4,6,12 | 1,10,11,100,110,1100 | 4 + 12 | 16 %e A239826 . 13 | 1,13 | 1,1101 | 1 + 13 | 14 %e A239826 . 14 | 1,2,7,14 | 1,10,111,1110 | 2 + 14 | 16 %e A239826 . 15 | 1,3,5,15 | 1,11,101,1111 | 1 + 3 + 15 | 19 %e A239826 . 16 | 1,2,4,8,16 | 1,10,100,1000,10000 | 16 | 16 %e A239826 . 17 | 1,17 | 1,10001 | 1 + 17 | 18 %e A239826 . 18 | 1,2,3,6,9,18 | 1,10,11,110,1001,10010 | 2 + 18 | 20 %e A239826 . 19 | 1,19 | 1,10011 | 1 + 19 | 20 %e A239826 . 20 | 1,2,4,5,10,20 | 1,10,100,101,1010,10100 | 4 + 20 | 24; %e A239826 a(63) = 1 + 3 + 7 + 63 = 74; %e A239826 a(735) = 1 + 3 + 7 + 15 + 735 = 761; %e A239826 a(4095) = 1 + 3 + 7 + 15 + 63 + 4095 = 4185; %e A239826 a(185535) = 1 + 3 + 7 + 15 + 31 + 63 + 185535 = 185655. %o A239826 (Haskell) %o A239826 import Data.List (isPrefixOf); import Data.Function (on) %o A239826 a239826 n = sum $ %o A239826 filter ((flip isPrefixOf `on` a030308_row) n) $ a027750_row n %o A239826 -- _Reinhard Zumkeller_, Mar 27 2014 %Y A239826 Cf. A030308, A027750, A080942, A000203, A007088. %K A239826 nonn %O A239826 1,2 %A A239826 _Reinhard Zumkeller_, Mar 27 2014