cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A239851 Number of n X 1 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 2, 4, 6, 8, 14, 20, 30, 48, 70, 108, 166, 248, 382, 580, 878, 1344, 2038, 3100, 4726, 7176, 10926, 16628, 25278, 38480, 58534, 89036, 135494, 206104, 313566, 477092, 725774, 1104224, 1679958, 2555772, 3888406, 5915688, 8999950, 13692500
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Column 1 of A239858.

Examples

			All solutions for n=4:
..3....3....2....2....2....3
..2....2....3....3....3....2
..3....3....3....2....3....2
..2....3....3....2....2....2
		

Formula

Empirical: a(n) = a(n-2) +2*a(n-3).
Empirical g.f.: 2*x*(1 + x + x^2) / (1 - x^2 - 2*x^3). - Colin Barker, Feb 18 2018

A239852 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 5, 4, 5, 5, 6, 10, 11, 15, 16, 21, 26, 32, 41, 48, 62, 74, 94, 115, 142, 177, 216, 271, 331, 413, 508, 629, 779, 960, 1192, 1468, 1821, 2247, 2781, 3439, 4249, 5260, 6496, 8041, 9935, 12290, 15195, 18786, 23236, 28721, 35526, 43916, 54312, 67152, 83033
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Examples

			All solutions for n=4:
..3..2....3..2....3..2....2..3
..2..3....2..3....2..3....3..0
..2..0....3..0....3..0....3..2
..2..0....2..3....3..2....2..3
		

Crossrefs

Column 2 of A239858.

Formula

Empirical: a(n) = a(n-2) + a(n-5) for n>9.
Empirical g.f.: x*(2 + 3*x + 3*x^2 + x^3 - x^5 - 2*x^6 + x^8) / (1 - x^2 - x^5). - Colin Barker, Oct 26 2018

A239853 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 9, 44, 84, 130, 343, 685, 1704, 3977, 7958, 18574, 40388, 86314, 203202, 433430, 967411, 2205109, 4735287, 10746065, 23937983, 52281965, 118605335, 261244402, 578751600, 1302168082, 2864205270, 6395152778, 14272351652, 31509181522
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Column 3 of A239858

Examples

			Some solutions for n=4
..3..2..3....2..3..3....3..2..3....3..2..3....3..2..3....2..3..2....3..2..3
..2..1..0....3..1..2....2..1..0....2..1..2....2..1..0....3..1..3....2..1..0
..3..0..2....3..2..3....3..0..2....3..1..2....3..0..2....3..1..3....2..0..0
..2..1..0....3..1..3....3..2..0....3..2..2....2..1..2....2..3..3....2..0..0
		

A239854 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

6, 12, 78, 203, 484, 1757, 4979, 19850, 68830, 207822, 799573, 2488921, 8261626, 29985170, 94570580, 336674607, 1151293607, 3775219224, 13467393979, 44587173533, 151997573760, 528796519331, 1751682284364, 6079087768020
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Column 4 of A239858

Examples

			Some solutions for n=4
..2..3..3..2....3..2..3..2....2..3..3..2....2..3..3..2....3..2..3..2
..3..1..1..3....2..1..2..3....3..1..1..3....3..1..1..3....2..1..2..3
..3..1..1..3....3..2..2..2....2..3..2..2....3..1..1..3....3..0..2..2
..2..3..2..2....2..3..0..2....2..0..1..0....3..2..3..3....3..1..1..2
		

A239855 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

8, 29, 255, 1114, 4549, 28184, 125255, 860559, 4802971, 24477675, 167075425, 824227912, 4838346333, 28474926407, 141317949021, 883311612241, 4759951691561, 26045766222755, 156842648720379, 819459824961446
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Column 5 of A239858

Examples

			Some solutions for n=4
..3..2..3..2..3....3..2..3..3..2....3..2..3..2..3....3..2..2..2..3
..2..1..1..1..2....2..1..1..1..3....2..1..2..3..2....2..1..0..1..2
..3..1..3..1..2....3..0..2..3..3....3..0..2..2..0....3..1..3..2..2
..2..1..1..1..2....2..1..0..2..2....3..2..2..0..2....3..2..2..2..2
		

A239859 Number of 2 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 9, 12, 29, 63, 100, 215, 468, 785, 1654, 3515, 6048, 12676, 26381, 46460, 96810, 198286, 355994, 737992, 1493159, 2724777, 5619409, 11263131, 20836948, 42752798, 85081916, 159218104, 325067366, 643478067, 1215731399, 2470549558, 4871466920
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Row 2 of A239858.

Examples

			Some solutions for n=4
..3..2..3..2....2..3..3..2....2..3..3..3....3..2..2..2....3..2..3..3
..2..1..1..3....3..1..1..3....3..2..2..2....2..1..0..0....2..3..2..2
		

Crossrefs

Cf. A239858.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-3) -8*a(n-4) -7*a(n-5) +9*a(n-7) +10*a(n-8) -24*a(n-9) +5*a(n-10) +29*a(n-11) -18*a(n-12) -10*a(n-13) -10*a(n-14) +16*a(n-15) +12*a(n-16) -12*a(n-17) for n>21.

A239860 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 5, 44, 78, 255, 742, 1382, 5647, 14755, 33946, 120389, 305123, 717503, 2451925, 6276842, 15461619, 51283453, 130329061, 331984698, 1067700153, 2718467454, 7099921104, 22241389875, 56803646347, 151320850227, 463374925294
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Row 3 of A239858

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..3....3..2..3..3
..2..1..1..3....2..1..1..3....2..1..2..3....2..1..2..2....2..1..2..2
..2..1..2..3....3..1..3..2....3..2..2..2....3..0..2..3....2..0..0..3
		

A239861 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

6, 4, 84, 203, 1114, 3463, 9963, 71695, 219708, 889871, 4682227, 14101348, 56490669, 272270300, 908846318, 3737847138, 17250775307, 59577644920, 244962530289, 1088932223860, 3891762853661, 15991497390003, 68807314247286
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Row 4 of A239858

Examples

			Some solutions for n=4
..3..2..2..2....2..3..3..3....2..3..2..2....3..2..3..2....3..2..3..2
..2..1..0..0....3..1..1..2....3..1..1..0....2..1..2..3....2..1..2..3
..3..2..0..0....3..2..2..0....3..2..2..0....3..0..2..2....3..0..2..0
..2..3..3..3....2..3..0..0....3..1..3..0....2..1..0..2....2..1..0..2
		

A239862 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

8, 5, 130, 484, 4549, 19065, 77212, 970717, 4024283, 29283865, 237306256, 903816798, 6001392838, 42830861947, 200921301635, 1351900199288, 8836338066911, 44530526981817, 287975221682482, 1867118985367733
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Row 5 of A239858

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..3....2..3..3..2....3..2..3..3....3..2..3..3
..2..1..1..3....2..1..2..2....3..1..1..3....2..1..1..2....2..1..2..2
..3..1..3..2....3..0..0..0....3..2..2..0....3..2..2..2....3..0..0..2
..3..2..2..2....3..1..2..0....3..1..3..0....2..3..0..0....3..2..2..0
..2..3..0..0....2..1..2..2....2..1..0..2....3..2..0..0....2..3..0..2
		

A239850 Number of n X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 44, 203, 4549, 176208, 9885999, 14757679494
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Diagonal of A239858

Examples

			Some solutions for n=4
..3..2..3..3....2..3..3..2....2..3..3..2....2..3..3..2....2..3..3..2
..2..1..2..2....3..1..1..3....3..1..1..3....3..1..1..3....3..1..2..3
..3..0..0..2....3..1..2..0....3..1..2..0....3..1..1..3....2..3..2..0
..3..2..2..0....2..3..3..3....2..3..0..3....3..2..3..3....2..1..2..3
		
Showing 1-10 of 13 results. Next