This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239878 #32 Jun 25 2025 14:48:56 %S A239878 0,18,27,36,45,72,81,108,153,198,216,225,243,252,270,297,306,342,369, %T A239878 396,423,441,450,477,486,495,504,513,522,549,558,576,603,630,639,657, %U A239878 693,702,729,747,756,783,801,846,891,918,954,963,972,981 %N A239878 Numbers k with digit_sum(k*k) + 1 = digit_sum((k+1)*(k+1)). %C A239878 All terms are divisible by 9. %C A239878 The number of terms is unlimited: n = 3*10^z + 6, i.e., digit_sum(n*n) + 1 = 27 + 1 = 28 = digit_sum((n+1)*(n+1)). - _Reiner Moewald_, Apr 20 2014 %H A239878 Reiner Moewald, <a href="/A239878/b239878.txt">Table of n, a(n) for n = 1..4067</a> %F A239878 A240752(a(n)) = 1. - _Reinhard Zumkeller_, Apr 12 2014 %o A239878 (Python) %o A239878 def digit_Sum(n): %o A239878 integerString = str(n) %o A239878 digit_Sum=0 %o A239878 for digitLetter in integerString: %o A239878 digit_Sum = digit_Sum + int(digitLetter) %o A239878 return digit_Sum %o A239878 count = 0; %o A239878 for i in range(20000): %o A239878 if(digit_Sum(i*i) + 1 == digit_Sum((i+1)*(i+1))): %o A239878 count = count +1 %o A239878 print(count," ",i) %o A239878 (PARI) isok(n) = (sumdigits(n^2) + 1) == sumdigits((n+1)^2); \\ _Michel Marcus_, Apr 06 2014 %o A239878 (Haskell) %o A239878 import Data.List (elemIndices) %o A239878 a239878 n = a239878_list !! (n-1) %o A239878 a239878_list = elemIndices 1 a240752_list %o A239878 -- _Reinhard Zumkeller_, Apr 12 2014 %Y A239878 Cf. A202089, A240752, A240754, A004159, A007953, A000290. %K A239878 nonn,base %O A239878 1,2 %A A239878 _Reiner Moewald_, Mar 28 2014