A239884 Least positive integer k <= n with pi(pi(k*n)) a square, or 0 if such a number k does not exist, where pi(x) denotes the number of primes not exceeding x.
1, 1, 1, 1, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 13, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 16, 9, 9, 9, 9, 4, 4, 4, 4, 4, 4, 4, 4, 4, 13, 70, 20, 7, 7, 7, 7, 7, 7, 63, 11
Offset: 1
Keywords
Examples
a(5) = 4 since pi(pi(4*5)) = pi(8) = 2^2, but none of pi(pi(1*5)) = pi(3) = 2, pi(pi(2*5)) = pi(4) = 2 and pi(pi(3*5)) = pi(6) = 3 is a square. a(192969) = 83187 with pi(pi(83187*192969)) = pi(715034817) = 6082^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, List of (n, a(n), sqrt(pi(pi(a(n)*n))) for n = 1, ..., 2*10^5
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] f[n_]:=PrimePi[PrimePi[n]] Do[Do[If[SQ[f[k*n]],Print[n," ",k];Goto[aa]],{k,1,n}]; Print[n," ",0];Label[aa];Continue,{n,1,80}]
Comments