This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239893 #21 Mar 27 2021 22:49:56 %S A239893 1,0,1,1,0,1,3,2,2,0,0,2,11,16,10,6,0,0,2,16,69,127,128,60,17,0,0,0, %T A239893 10,127,541,1188,1441,1032,386,73,0,0,0,6,128,1188,5096,11982,17265, %U A239893 15466,8582,2652,389,0,0,0,0,60,1441,11982,50586,127765,206880,222472,158057,71980,18914,2274 %N A239893 Irregular triangle read by rows: T(n,k) is the number of sensed 3-connected planar maps with n >= 4 faces and k >= 4 vertices. %C A239893 T(n,k) is the number of polyhedra with n faces and k vertices up to orientation preserving isomorphisms. The number of edges is n+k-2. - _Andrew Howroyd_, Mar 27 2021 %H A239893 Andrew Howroyd, <a href="/A239893/b239893.txt">Table of n, a(n) for n = 4..199</a> (rows 4..17) %H A239893 Gunnar Brinkmann and Brendan McKay, <a href="https://users.cecs.anu.edu.au/~bdm/papers/plantri-full.pdf">Fast generation of planar graphs (expanded edition)</a>, Table 9-11. %H A239893 Timothy R. Walsh, <a href="https://doi.org/10.1016/j.disc.2004.08.036">Efficient enumeration of sensed planar maps</a>, Discrete Math. 293 (2005), no. 1-3, 263--289. MR2136069 (2006b:05062). %H A239893 Timothy R. S. Walsh, <a href="https://doi.org/10.1016/0095-8956(82)90074-0">Counting nonisomorphic three-connected planar maps</a>, J. Combin. Theory Ser. B 32 (1982), no. 1, 33-44. %F A239893 T(n,k) = T(k,n). - _Andrew Howroyd_, Mar 27 2021 %e A239893 Triangle begins: %e A239893 1 %e A239893 0 1 1 %e A239893 0 1 3 2 2 %e A239893 0 0 2 11 16 10 6 %e A239893 0 0 2 16 69 127 128 60 17 %e A239893 0 0 0 10 127 541 1188 1441 1032 386 73 %e A239893 0 0 0 6 128 1188 5096 11982 17265 15466 8582 2652 389 %e A239893 0 0 0 0 60 1441 11982 50586 127765 206880 222472 158057 71980 18914 2274 %e A239893 ... %Y A239893 Row and column sums are A119501. %Y A239893 Main diagonal is A342057. %Y A239893 The unsensed version is A212438. %Y A239893 Cf. A005645 (by edges). %K A239893 nonn,tabf %O A239893 4,7 %A A239893 _N. J. A. Sloane_, Apr 03 2014 %E A239893 Terms a(67) and beyond from _Andrew Howroyd_, Mar 27 2021