cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239896 Generalized ternary Thue-Morse sequence arising from junction numbers problem in base 10.

This page as a plain text file.
%I A239896 #34 Sep 16 2024 12:26:21
%S A239896 0,2,2,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,1,1,1,
%T A239896 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,3,8,3,8,3,
%U A239896 8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,3
%N A239896 Generalized ternary Thue-Morse sequence arising from junction numbers problem in base 10.
%C A239896 See Section 9 in the linked paper.
%H A239896 Max A. Alekseyev and N. J. A. Sloane, <a href="https://arxiv.org/abs/2112.14365">On Kaprekar's Junction Numbers</a>, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
%F A239896 a(n) = A006064(n) mod 9.
%Y A239896 Cf. A006064, A010060, A239110.
%K A239896 nonn
%O A239896 0,2
%A A239896 _Max Alekseyev_ and _N. J. A. Sloane_, Apr 05 2014