This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239902 #50 Aug 02 2022 12:35:49 %S A239902 13,181,2521,76543,489061,6811741,1321442641,18405321661, %T A239902 381765135195632792959100810331957408101589361 %N A239902 Exceptional primes: those for which Eq. (4.8) in Cosgrave and Dilcher (2011) fails. %C A239902 Comments from _Christopher M. Stokes_, Aug 02 2022: (Start) %C A239902 Also the primes p for which A047788(p-1) = 0 mod p^2. %C A239902 Also the primes for which the cyclotomic lambda invariant of Q(sqrt{-3}) is greater than 1. (End) %D A239902 J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.6. %H A239902 J. B. Cosgrave and K. Dilcher, <a href="http://dx.doi.org/10.1142/S179304211100396X">The multiplicative orders of certain Gauss factorials</a>, Intl. J. Number Theory 7 (1) (2011) 145-171. %H A239902 John B. Cosgrave and Karl Dilcher, <a href="http://dx.doi.org/10.7169/facm/2016.54.1.7">The multiplicative orders of certain Gauss factorials II</a>, Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93. %H A239902 D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, <a href="https://doi.org/10.1016/S0022-314X(05)80027-7">Computation of Iwasawa lambda invariants for imaginary quadratic fields</a>, Journal of number theory, 37(1) (1991), 100-121. [Reference added by _N. J. A. Sloane_, Jun 24 2022] %H A239902 Christopher Stokes, <a href="https://arxiv.org/abs/2207.07804">On Gauss factorials and their application to Iwasawa theory for imaginary quadratic fields</a>, arXiv:2207.07804 [math.NT], 2022. %Y A239902 Cf. A354772, A117808. %K A239902 nonn,more %O A239902 1,1 %A A239902 _N. J. A. Sloane_, Apr 06 2014 %E A239902 More terms from Cosgrave (2022), Section 18.6 added by _N. J. A. Sloane_, May 29 2022 %E A239902 a(9) from Stokes (2022) added by _Michel Marcus_, Jul 20 2022