cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239907 Let cn(n,k) denote the number of times 11..1 (k 1's) appears in the binary representation of n; a(n) = n - cn(n,1) + cn(n,2) - cn(n,3) + cn(n,4) - ... .

This page as a plain text file.
%I A239907 #47 Apr 27 2024 03:33:59
%S A239907 0,0,1,2,3,3,5,5,7,7,8,9,11,11,12,13,15,15,16,17,18,18,20,20,23,23,24,
%T A239907 25,26,26,28,28,31,31,32,33,34,34,36,36,38,38,39,40,42,42,43,44,47,47,
%U A239907 48,49,50,50,52,52,54,54,55,56,58,58,59,60,63,63,64,65,66,66,68,68,70,70,71,72,74,74,75
%N A239907 Let cn(n,k) denote the number of times 11..1 (k 1's) appears in the binary representation of n; a(n) = n - cn(n,1) + cn(n,2) - cn(n,3) + cn(n,4) - ... .
%H A239907 Gheorghe Coserea, <a href="/A239907/b239907.txt">Table of n, a(n) for n = 0..10000</a>
%H A239907 Jon Maiga, <a href="http://sequencedb.net/s/A239907">Computer-generated formulas for A239907</a>, Sequence Machine.
%F A239907 Conjecture: a(n) = n - A329320(n) for n >= 0 (noticed by Sequence Machine). - _Mikhail Kurkov_, Oct 13 2021
%p A239907 # From A014081:
%p A239907 cn := proc(v, k) local n, s, nn, i, j, som, kk;
%p A239907 som := 0;
%p A239907 kk := convert(cat(seq(1, j = 1 .. k)), string);
%p A239907 n := convert(v, binary);
%p A239907 s := convert(n, string);
%p A239907 nn := length(s);
%p A239907 for i to nn - k + 1 do
%p A239907 if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
%p A239907 som; end;
%p A239907 g:=n->add((-1)^i*cn(n,i),i=1..10); # assumes n < 1023
%p A239907 [seq(n+g(n), n=0..100)];
%t A239907 cn[n_, k_] := Count[Partition[IntegerDigits[n, 2], k, 1], Table[1, {k}]]; Table[n - Sum[cn[n, i], {i, 1, IntegerLength[n, 2], 2}] + Sum[cn[n, i], {i, 2, IntegerLength[n, 2], 2}], {n, 0, 78}] (* _Michael De Vlieger_, Sep 18 2015 *)
%o A239907 (PARI)
%o A239907 binruns(n) = {
%o A239907   if (n == 0, return([1, 0]));
%o A239907   my(bag = List(), v=0);
%o A239907   while(n != 0,
%o A239907         v = valuation(n,2); listput(bag, v); n >>= v; n++;
%o A239907         v = valuation(n,2); listput(bag, v); n >>= v; n--);
%o A239907   return(Vec(bag));
%o A239907 };
%o A239907 a(n) = {
%o A239907   my(v = binruns(n));
%o A239907   n - sum(i = 1, #v, if (i%2 == 0, (v[i] + 1)\2, 0))
%o A239907 };
%o A239907 vector(79, i, a(i-1))  \\ _Gheorghe Coserea_, Sep 18 2015
%Y A239907 Cf. A000120, A012081, A014082, A239904, A239906.
%K A239907 nonn,base
%O A239907 0,4
%A A239907 _N. J. A. Sloane_, Apr 07 2014