This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239934 #48 Sep 21 2018 08:14:10 %S A239934 7,15,28,31,42,60,56,63,91,90,42,42,124,49,49,120,168,127,63,63,195, %T A239934 70,70,186,224,180,84,84,252,217,210,280,248,105,105,360,112,112,255 %N A239934 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(4n). %C A239934 Row n is a palindromic composition of sigma(4n). %C A239934 Row n is also the row 4n of A237270. %C A239934 Row n has length A237271(4n). %C A239934 Row sums give A193553. %C A239934 First differs from A193553 at a(11). %C A239934 Also row n lists the parts of the symmetric representation of sigma in the n-th arm of the fourth quadrant of the spiral described in A239660, see example. %C A239934 For the parts of the symmetric representation of sigma(4n-3), see A239931. %C A239934 For the parts of the symmetric representation of sigma(4n-2), see A239932. %C A239934 For the parts of the symmetric representation of sigma(4n-1), see A239933. %C A239934 We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - _Omar E. Pol_, Dec 06 2016 %e A239934 The irregular triangle begins: %e A239934 7; %e A239934 15; %e A239934 28; %e A239934 31; %e A239934 42; %e A239934 60; %e A239934 56; %e A239934 63; %e A239934 91; %e A239934 90; %e A239934 42, 42; %e A239934 124; %e A239934 49, 49; %e A239934 120; %e A239934 168; %e A239934 ... %e A239934 Illustration of initial terms in the fourth quadrant of the spiral described in A239660: %e A239934 . %e A239934 . 7 15 28 31 42 60 56 63 %e A239934 . _ _ _ _ _ _ _ _ %e A239934 . | | | | | | | | | | | | | | | | %e A239934 . _| | | | | | | | | | | | | | | | %e A239934 . _ _| _| | | | | | | | | | | | | | | %e A239934 . |_ _ _| _ _| | | | | | | | | | | | | | %e A239934 . _| _ _| | | | | | | | | | | | | %e A239934 . | _| _ _ _| | | | | | | | | | | | %e A239934 . _ _ _ _| | _| _ _| | | | | | | | | | | %e A239934 . |_ _ _ _ _| _| | _ _ _| | | | | | | | | | %e A239934 . | _| | _ _ _| | | | | | | | | %e A239934 . | _ _| _| | _ _ _ _| | | | | | | | %e A239934 . _ _ _ _ _ _| | _| _| | _ _ _ _| | | | | | | %e A239934 . |_ _ _ _ _ _ _| _ _| _| _ _| | _ _ _ _ _| | | | | | %e A239934 . | _ _| _| _| | _ _ _ _| | | | | %e A239934 . | | | | _ _| | _ _ _ _ _| | | | %e A239934 . _ _ _ _ _ _ _ _| | _ _| _ _|_| | | _ _ _ _ _| | | %e A239934 . |_ _ _ _ _ _ _ _ _| | _ _| _| _ _| | | _ _ _ _ _ _| | %e A239934 . | | | _| _ _| | | _ _ _ _ _ _| %e A239934 . | | _ _| _| _ _| _ _| | | %e A239934 . _ _ _ _ _ _ _ _ _ _| | | | | _| _ _| | %e A239934 . |_ _ _ _ _ _ _ _ _ _ _| | _ _ _| _| _| | _ _| %e A239934 . | | | _| _| | %e A239934 . | | _ _ _| | _| _| %e A239934 . _ _ _ _ _ _ _ _ _ _ _ _| | | _ _ _| _ _| _| %e A239934 . |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | _ _| %e A239934 . | | _ _ _| | %e A239934 . | | | _ _ _| %e A239934 . _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | %e A239934 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A239934 . | | %e A239934 . | | %e A239934 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A239934 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A239934 . %e A239934 For n = 7 we have that 4*7 = 28 and the 28th row of A237593 is [15, 5, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 5, 15] and the 27th row of A237593 is [14, 5, 3, 2, 1, 2, 2, 1, 2, 3, 5, 14] therefore between both Dyck paths there are only one region (or part) of size 56, so row 7 is 56. %e A239934 The sum of divisors of 28 is 1 + 2 + 4 + 7 + 14 + 28 = A000203(28) = 56. On the other hand the sum of the parts of the symmetric representation of sigma(28) is 56, equaling the sum of divisors of 28. %e A239934 For n = 11 we have that 4*11 = 44 and the 44th row of A237593 is [23, 8, 4, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 8, 23] and the 43rd row of A237593 is [22, 8, 4, 3, 2, 1, 2, 1, 1, 2, 1, 2, 3, 4, 8, 23] therefore between both Dyck paths there are two regions (or parts) of sizes [42, 42], so row 11 is [42, 42]. %e A239934 The sum of divisors of 44 is 1 + 2 + 4 + 11 + 22 + 44 = A000203(44) = 84. On the other hand the sum of the parts of the symmetric representation of sigma(44) is 42 + 42 = 84, equaling the sum of divisors of 44. %Y A239934 Cf. A000203, A193553, A196020, A236104, A235791, A237048, A237270, A237271, A237591, A237593, A239660, A239931, A239932, A239933, A244050, A245092, A262626. %K A239934 nonn,tabf,more %O A239934 1,1 %A A239934 _Omar E. Pol_, Mar 29 2014