This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239942 #23 Feb 22 2025 16:11:41 %S A239942 4,114,4920,39911760,6187104000,355681201075200,121289412980736000, %T A239942 25851895093784567808000,8841761967887685215658639360000, %U A239942 8213996892184183115771019264000000,13763753083003506392138056763855339520000000 %N A239942 a(n) = prime(n)! - prime(n - 1)!. %H A239942 Michael De Vlieger, <a href="/A239942/b239942.txt">Table of n, a(n) for n = 2..87</a> %F A239942 a(n) = A039716(n) - A039716(n-1). %e A239942 a(3) = Prime(3)! - Prime(2)! = 5! - 3! = 120 - 6 = 114. %p A239942 A239942:=n->ithprime(n)!-ithprime(n-1)!: seq(A239942(n), n=2..15); # _Wesley Ivan Hurt_, Aug 03 2014 %t A239942 a239942[n_Integer] := Prime[n]! - Prime[n - 1]!; Table[a239942[n], {n, 2, 87}] (* _Michael De Vlieger_, Aug 03 2014 *) %o A239942 (Perl) %o A239942 #!/usr/bin/perl %o A239942 use strict; %o A239942 use warnings; %o A239942 use feature 'say'; %o A239942 use Math::Prime::XS qw(is_prime); %o A239942 use Memoize; %o A239942 use Math::BigInt; %o A239942 memoize('factorial'); %o A239942 use Data::Dumper; %o A239942 my @primes = (); %o A239942 for (2 .. 200) { %o A239942 if(is_prime($_)) { %o A239942 push @primes, $_; %o A239942 } %o A239942 } %o A239942 for (1 .. $#primes) { %o A239942 say factorial($primes[$_]) - factorial($primes[$_ - 1]); %o A239942 } %o A239942 sub factorial { %o A239942 my $x = Math::BigInt->new(shift); %o A239942 return $x if $x == 1; %o A239942 return factorial($x - 1) * $x; %o A239942 } %o A239942 (PARI) a(n)=prime(n)! - prime(n-1)!; %o A239942 vector(22,n,a(n+1)) \\ _Joerg Arndt_, Mar 31 2014 %o A239942 (Python) %o A239942 from gmpy2 import mpz,fac %o A239942 from sympy import prime %o A239942 def A239942(n): %o A239942 return fac(mpz(prime(n))) - fac(mpz(prime(n-1))) # _Chai Wah Wu_, Aug 06 2014 %Y A239942 Cf. A000040, A039716. %K A239942 nonn %O A239942 2,1 %A A239942 _Norman Koch_, Mar 29 2014