This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239948 #8 Oct 12 2015 04:04:35 %S A239948 1,0,1,1,2,1,3,2,4,4,6,6,9,9,12,14,17,18,25,26,32,38,43,49,62,65,78, %T A239948 92,103,114,142,151,175,203,229,252,302,323,378,422,477,524,619,661, %U A239948 758,847,958,1038,1204,1297,1485,1626,1829,1989,2285,2459,2770,3035 %N A239948 Number of partitions of n such that (number of distinct parts) < least part. %H A239948 Alois P. Heinz, <a href="/A239948/b239948.txt">Table of n, a(n) for n = 0..1000</a> %F A239948 a(n) + A239952(n) = A000041(n) for n >= 0. %e A239948 a(10) counts these 6 partitions: [10], [7,3], [6,4], [5,5], [4,3,3], [2,2,2,2,2]. %p A239948 b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d+1, 0, %p A239948 add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i))) %p A239948 end: %p A239948 a:= n-> b(n$2, 0): %p A239948 seq(a(n), n=0..80); # _Alois P. Heinz_, Apr 02 2014 %t A239948 z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n]; %t A239948 Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*) %t A239948 Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*) %t A239948 Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*) %t A239948 Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*) %t A239948 Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*) %t A239948 b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i <= d+1, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Oct 12 2015, after _Alois P. Heinz_ *) %Y A239948 Cf. A239949, A239950, A239951, A239952. %K A239948 nonn,easy %O A239948 0,5 %A A239948 _Clark Kimberling_, Mar 30 2014