This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239955 #31 Aug 18 2025 16:26:19 %S A239955 0,0,0,0,1,2,4,7,12,17,27,38,54,75,104,137,187,245,322,418,542,691, %T A239955 887,1121,1417,1777,2228,2767,3441,4247,5235,6424,7871,9594,11688, %U A239955 14173,17168,20723,24979,30008,36010,43085,51479,61357,73032,86718,102852,121718 %N A239955 Number of partitions p of n such that (number of distinct parts of p) <= max(p) - min(p). %C A239955 From _Gus Wiseman_, Jun 26 2022: (Start) %C A239955 Also the number of partitions of n with at least one gap, i.e., partitions whose parts do not form a contiguous interval. These partitions are ranked by A073492. For example, the a(0) = 0 through a(8) = 12 partitions are: %C A239955 . . . . (31) (41) (42) (52) (53) %C A239955 (311) (51) (61) (62) %C A239955 (411) (331) (71) %C A239955 (3111) (421) (422) %C A239955 (511) (431) %C A239955 (4111) (521) %C A239955 (31111) (611) %C A239955 (3311) %C A239955 (4211) %C A239955 (5111) %C A239955 (41111) %C A239955 (311111) %C A239955 Also the number of non-constant partitions of n with a repeated non-maximal part, ranked by A065201. The a(0) = 0 through a(8) = 12 partitions are: %C A239955 . . . . (211) (311) (411) (322) (422) %C A239955 (2111) (2211) (511) (611) %C A239955 (3111) (3211) (3221) %C A239955 (21111) (4111) (3311) %C A239955 (22111) (4211) %C A239955 (31111) (5111) %C A239955 (211111) (22211) %C A239955 (32111) %C A239955 (41111) %C A239955 (221111) %C A239955 (311111) %C A239955 (2111111) %C A239955 (End) %H A239955 Alois P. Heinz, <a href="/A239955/b239955.txt">Table of n, a(n) for n = 0..10000</a> (first 201 terms from John Tyler Rascoe) %F A239955 a(n) = A000041(n) - A034296(n). %F A239955 G.f.: Sum_{i>1} q^i/(q;q)_{i-1} * Sum_{j=1..i-1} (q^2;q^2)_{j-2} where (a;q)_k = Product_{i>=0..k} (1-a*q^i). - _John Tyler Rascoe_, Aug 16 2025 %e A239955 a(6) counts these 4 partitions: 51, 42, 411, 3111. %p A239955 b:= proc(n, i) option remember; `if`(n=0, 1, %p A239955 `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i))) %p A239955 end: %p A239955 a:= n-> combinat[numbpart](n)-add(b(n, k), k=0..n): %p A239955 seq(a(n), n=0..47); # _Alois P. Heinz_, Aug 18 2025 %t A239955 z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n]; %t A239955 Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}] (*A239954*) %t A239955 Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*) %t A239955 Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*) %t A239955 Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}] (*A034296*) %t A239955 Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*) %t A239955 (* second program *) %t A239955 Table[Length[Select[IntegerPartitions[n],Min@@Differences[#]<-1&]],{n,0,30}] (* _Gus Wiseman_, Jun 26 2022 *) %o A239955 (PARI) %o A239955 qs(a,q,n) = {prod(k=0,n,1-a*q^k)} %o A239955 A_q(N) = {if(N<4, vector(N+1,i,0), my(q='q+O('q^(N-2)), g= sum(i=2,N+1, q^i/qs(q,q,i-1)*sum(j=1,i-1, q^(2*j)*qs(q^2,q^2,j-2)))); concat([0,0,0,0], Vec(g)))} \\ _John Tyler Rascoe_, Aug 16 2025 %Y A239955 Cf. A239954, A239956, A239958. %Y A239955 The complement is counted by A034296 (strict A137793), ranked by A073491. %Y A239955 These partitions are ranked by A073492, conjugate A065201. %Y A239955 Applying the condition to the conjugate gives A350839, ranked by A350841. %Y A239955 A000041 counts integer partitions, strict A000009. %Y A239955 A090858 counts partitions with a single hole, ranked by A325284. %Y A239955 A116931 counts partitions with differences != -1, strict A003114. %Y A239955 A116932 counts partitions with differences != -1 or -2, strict A025157. %Y A239955 Cf. A000070, A001227, A008284, A144300, A183558, A321440. %K A239955 nonn,easy,changed %O A239955 0,6 %A A239955 _Clark Kimberling_, Mar 30 2014