cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239956 Number of partitions p of n such that (number of distinct parts of p) = max(p) - min(p).

This page as a plain text file.
%I A239956 #25 Mar 16 2024 13:20:45
%S A239956 0,0,0,0,1,1,2,3,6,5,10,12,16,21,28,30,45,53,63,81,99,114,144,173,204,
%T A239956 245,293,340,410,482,554,662,774,890,1044,1207,1393,1619,1864,2134,
%U A239956 2464,2828,3220,3701,4223,4789,5474,6223,7050,8004,9058,10230,11579
%N A239956 Number of partitions p of n such that (number of distinct parts of p) = max(p) - min(p).
%H A239956 John Tyler Rascoe, <a href="/A239956/b239956.txt">Table of n, a(n) for n = 0..100</a>
%F A239956 A239954(n) + a(n) + A034296(n) = A000041(n) for n >= 1.
%F A239956 G.f.: Sum_{m>0} A(x,m), where A(x,m) = Sum_{i>m+1} x^(i+m)/((1-x^i)*(1-x^m)) * Sum_{j=m+1..i-1} ( (1-x^j)/(x^j) * Product_{k=m+1..i-1} (x^k/(1-x^k)) ) is the g.f. for partitions of this kind with min(p) = m. - _John Tyler Rascoe_, Mar 16 2024
%e A239956 a(8) counts these 6 partitions:  53, 431, 422, 4211, 3311, 311111.
%t A239956 z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
%t A239956 Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}]  (* A239954 *)
%t A239956 Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (* A239955 *)
%t A239956 Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (* this sequence *)
%t A239956 Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}]  (* A034296 *)
%t A239956 Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (* A239958 *)
%o A239956 (PARI)
%o A239956 A_x(N) = {my(x='x+O('x^N), g = sum(m=1,N, sum(i=m+2,N, x^(i+m)/((1-x^i)*(1-x^m)) * sum(j=m+1,i-1, (1-x^j)/(x^j) * prod(k=m+1,i-1, (x^k/(1-x^k)))))));
%o A239956 concat([0,0,0,0],Vec(g))}
%o A239956 A_x(51) \\ _John Tyler Rascoe_, Mar 16 2024
%Y A239956 Cf. A239954, A239955, A034296, A239958.
%K A239956 nonn,easy
%O A239956 0,7
%A A239956 _Clark Kimberling_, Mar 30 2014