A239959 Number of partitions of n such that 2*(number of distinct parts) = number of parts.
1, 0, 1, 0, 1, 1, 3, 2, 3, 3, 8, 8, 11, 14, 19, 19, 29, 37, 47, 61, 79, 85, 114, 141, 168, 210, 257, 309, 395, 468, 556, 685, 816, 966, 1162, 1380, 1667, 1988, 2340, 2777, 3305, 3900, 4571, 5423, 6348, 7385, 8700, 10188, 11846, 13876, 16118, 18757, 21846
Offset: 0
Examples
a(10) counts these 8 partitions: 7111, 55, 4411, 4222, 421111, 3331, 3322, 322111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A239954.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0, add(b(n-i*j, i-1, t+`if`(j>0, 2, 0)-j), j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60);
-
Mathematica
z = 55; d[p_] := d[p] = Length[DeleteDuplicates[p]]; Table[Count[IntegerPartitions[n], p_ /; 2*d[p] == Length[p]], {n, 0, z}]