cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239963 Number of triangular numbers below prime(n) which are also primitive roots modulo prime(n).

This page as a plain text file.
%I A239963 #24 Aug 05 2019 02:49:07
%S A239963 1,0,1,1,1,1,3,3,3,4,2,1,3,2,3,3,3,3,1,3,3,4,5,5,3,5,4,9,3,7,6,4,7,3,
%T A239963 9,3,7,5,10,9,10,9,5,10,7,7,2,5,8,6,8,7,6,6,12,10,8,9,7,10,8,11,6,6,
%U A239963 12,14,8,7,16,5,11,10,9,6,14,14,11,8,14,7
%N A239963 Number of triangular numbers below prime(n) which are also primitive roots modulo prime(n).
%C A239963 Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a primitive root 0 < g < p of the form k*(k+1)/2, where k is a positive integer.
%H A239963 Zhi-Wei Sun, <a href="/A239963/b239963.txt">Table of n, a(n) for n = 1..10000</a>
%H A239963 Z.-W. Sun, <a href="http://arxiv.org/abs/1405.0290">New observations on primitive roots modulo primes</a>, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
%e A239963 a(5) = 1 since the triangular number 3*4/2 = 6 is a primitive root modulo prime(5) = 11.
%e A239963 a(12) = 1 since the triangular number 5*6/2 = 15 is a primitive root modulo prime(12) = 37.
%e A239963 a(19) = 1 since the triangular number 7*8/2 = 28 is a primitive root modulo prime(19) = 67.
%t A239963 f[k_]:=f[k]=k(k+1)/2
%t A239963 dv[n_]:=dv[n]=Divisors[n]
%t A239963 Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,(Sqrt[8Prime[n]-7]-1)/2}];Print[n," ",m];Continue,{n,1,80}]
%Y A239963 Cf. A000040, A000217, A236308, A236966, A237112, A237121, A237594, A239957.
%K A239963 nonn
%O A239963 1,7
%A A239963 _Zhi-Wei Sun_, Apr 23 2014