A239975 Least k>0 such that n^2 + (n+k)^2 is a square, or -1 if no such k exists.
7, 2, 17, 7, 3, 14, 49, 4, 71, 34, 5, 14, 127, 6, 161, 1, 7, 98, 241, 8, 35, 142, 9, 17, 391, 10, 449, 28, 11, 254, 49, 12, 647, 322, 13, 2, 799, 14, 881, 73, 15, 482, 1057, 7, 119, 70, 17, 113, 1351, 18, 77, 34, 19, 782, 1681, 3, 1799, 898, 21, 56, 7, 22, 2177, 217, 23
Offset: 5
Keywords
Examples
a(6) = 2 because 6^2 + (6+2)^2 = 100 is a square. a(20) = 1 because 20^2 + 21^2 = 841 = 29^2.
Links
- Michael S. Branicky, Table of n, a(n) for n = 5..10004
Programs
-
PARI
s=[]; for(n=5, 100, k=1; while(!issquare(n^2+(n+k)^2), k++); s=concat(s, k)); s \\ Colin Barker, Mar 31 2014
-
Python
from sympy.ntheory.primetest import is_square def a(n): k = 1 while not is_square(n**2 + (n+k)**2): k += 1 return k print([a(n) for n in range(5, 70)]) # Michael S. Branicky, Jul 02 2021
Comments