cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A239980 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 3, 6, 16, 40, 84, 208, 474, 1047, 2530, 5668, 12907, 30446, 68427, 157875, 366480, 830089, 1920870, 4421253, 10083067, 23303103, 53453752, 122448587, 282350403, 647215090, 1486007814, 3420002865, 7842656682, 18022838258, 41428828907
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Examples

			Some solutions for n=4:
..3..0....3..0....3..0....3..0....3..0....3..0....3..0....3..0....3..0....3..0
..2..1....2..1....2..1....2..3....2..1....3..1....3..1....3..1....2..1....2..1
..2..1....2..0....2..0....2..0....2..1....2..1....3..2....3..1....2..1....2..0
..3..2....3..1....3..0....3..2....3..1....3..1....2..3....2..1....2..1....3..2
		

Crossrefs

Column 2 of A239986.

Formula

Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).
Empirical g.f.: x*(1 + 3*x + 4*x^2 - x^4 + 4*x^6 - 4*x^7 - 6*x^8 + 6*x^9 + 6*x^10 - 4*x^12) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 26 2018

A239981 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 4, 13, 56, 261, 935, 4113, 16724, 63746, 275188, 1085962, 4300307, 18095718, 71121297, 287888587, 1186770242, 4693927215, 19155022357, 77909148678, 310802944863, 1269055778212, 5125935099711, 20593563815344, 83875501530044
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 3 of A239986

Examples

			Some solutions for n=4
..3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0
..3..1..3....3..1..3....3..1..3....2..3..0....3..1..3....2..1..0....2..3..0
..2..1..2....3..1..3....2..1..0....2..0..0....3..2..3....2..0..0....2..0..1
..3..2..0....2..1..2....3..2..3....3..2..0....2..3..3....2..1..1....3..0..1
		

A239982 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 5, 22, 171, 1391, 9079, 70107, 514297, 3533132, 27478686, 195617485, 1396299371, 10574699363, 74869696354, 547239827048, 4060652644276, 28932235350938, 213204213265435, 1560042805514282, 11221251973358733, 82689323867874597
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 4 of A239986

Examples

			Some solutions for n=4
..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0
..2..3..0..0....2..1..0..0....3..1..3..0....2..1..0..0....3..1..3..0
..2..0..0..0....2..0..0..0....3..2..3..1....2..0..3..3....3..2..0..3
..3..0..0..1....3..2..0..3....2..3..3..1....3..0..0..2....2..3..0..2
		

A239983 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 6, 38, 530, 7113, 83658, 1174822, 15307425, 192702130, 2733573580, 34877309132, 455831231370, 6232060203371, 79504957220188, 1061047782962716, 14175980247721974, 182879377335377352, 2451126765466429888
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 5 of A239986

Examples

			Some solutions for n=4
..3..0..0..0..0....3..0..0..0..0....3..0..0..0..0....3..0..0..0..0
..2..3..0..0..0....2..1..0..0..0....2..3..0..3..3....2..3..0..3..3
..2..0..0..3..0....2..0..3..3..3....2..0..0..3..3....2..0..1..2..2
..2..0..0..0..1....3..0..0..2..2....3..2..0..2..1....2..0..0..1..1
		

A239984 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 7, 65, 1495, 31226, 652346, 16721012, 381369904, 9009351655, 233083355837, 5373732732783, 130821770741989, 3240495708022575, 75383547521530003, 1859081645190913254, 44959584675029390497, 1062939483571455261657
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 6 of A239986

Examples

			Some solutions for n=3
..3..0..0..0..0..0....3..0..0..0..0..0....3..0..0..0..0..0....3..0..0..0..0..0
..2..1..0..0..0..0....2..3..0..0..0..0....2..3..0..3..3..0....2..3..0..0..3..3
..2..0..3..0..0..3....2..0..0..0..0..3....2..0..0..3..2..1....2..0..1..0..2..2
		

A239987 Number of 3 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 6, 13, 22, 38, 65, 107, 169, 257, 378, 540, 752, 1024, 1367, 1793, 2315, 2947, 3704, 4602, 5658, 6890, 8317, 9959, 11837, 13973, 16390, 19112, 22164, 25572, 29363, 33565, 38207, 43319, 48932, 55078, 61790, 69102, 77049, 85667, 94993, 105065
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Examples

			Some solutions for n=4:
..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0
..2..3..0..3....2..1..0..0....3..1..3..0....3..1..3..0....2..1..0..0
..2..0..1..0....2..0..0..0....3..2..3..1....3..1..2..3....2..0..3..3
		

Crossrefs

Row 3 of A239986.

Formula

Empirical: a(n) = (1/24)*n^4 - (1/4)*n^3 + (71/24)*n^2 - (43/4)*n + 23 for n>3.
Conjectures from Colin Barker, Oct 27 2018: (Start)
G.f.: x*(3 - 9*x + 13*x^2 - 13*x^3 + 13*x^4 - 8*x^5 + x^6 + x^7) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>8.
(End)

A239988 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 16, 56, 171, 530, 1495, 4059, 10121, 23476, 51169, 105957, 210063, 401043, 740392, 1325954, 2309449, 3920715, 6500605, 10544919, 16762214, 26148867, 40085363, 60458446, 89814510, 131550423, 190148874, 271466315, 383082641, 534722915
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 4 of A239986

Examples

			Some solutions for n=4
..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0
..2..1..0..0....2..3..0..3....2..1..0..0....2..1..0..0....2..3..0..3
..2..0..0..3....2..0..0..0....2..0..0..0....2..0..3..0....2..0..1..0
..3..2..0..2....2..0..0..0....3..2..0..0....3..0..0..1....3..2..0..3
		

Formula

Empirical: a(n) = (1/907200)*n^10 - (1/72576)*n^9 + (113/120960)*n^8 - (265/12096)*n^7 + (2651/5400)*n^6 - (141761/17280)*n^5 + (40878671/362880)*n^4 - (10305217/9072)*n^3 + (399085217/50400)*n^2 - (86061371/2520)*n + 68243 for n>12

A239989 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 40, 261, 1391, 7113, 31226, 131242, 514539, 1914507, 6772946, 22897312, 74168162, 230889987, 691544987, 1994352403, 5541664374, 14851119427, 38433580993, 96194422578, 233234971795, 548761214881, 1255035407604
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 5 of A239986

Examples

			Some solutions for n=3
..3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0
..2..3..3....2..1..0....2..3..0....2..3..3....3..1..3....3..1..3....3..1..3
..2..0..0....2..0..0....2..0..1....2..0..0....2..1..0....3..1..3....2..1..2
..3..2..2....3..0..1....3..0..2....3..2..0....3..2..2....2..3..2....3..1..2
..2..1..0....3..1..2....2..3..0....3..1..2....2..1..0....2..0..0....3..2..2
		

Formula

Empirical polynomial of degree 24 (see link above)

A239990 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 84, 935, 9079, 83658, 652346, 4803152, 33097266, 216706121, 1349071998, 8021288399, 45621294425, 248975151409, 1305176292249, 6573063784889, 31800829162681, 147862529519971, 661287427073134, 2848137371338660
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 6 of A239986

Examples

			Some solutions for n=3
..3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0
..3..1..3....2..1..0....3..1..3....2..3..3....2..3..0....2..1..0....3..1..3
..3..2..3....2..0..3....2..1..2....2..0..0....2..0..1....2..0..0....3..2..0
..2..3..3....3..0..2....3..2..0....3..2..0....3..2..2....2..0..1....2..3..3
..3..1..2....3..2..2....3..1..2....3..2..3....2..1..0....2..0..1....3..1..2
..2..3..3....2..3..3....3..2..2....2..3..3....3..2..3....3..0..2....2..3..3
		

Formula

Empirical polynomial of degree 55 (see link above)

A239991 Number of 7 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

15, 208, 4113, 70107, 1174822, 16721012, 226886115, 2823199343, 33074332722, 366468588411, 3862531765288, 38827887664460, 374132975836928, 3462018008021025, 30769710869286232, 262533007814160639
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 7 of A239986.

Examples

			Some solutions for n=3:
..3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0....3..0..0
..3..1..3....3..1..3....3..1..3....2..1..0....2..3..0....2..3..0....3..1..3
..2..1..0....3..1..2....3..1..3....2..0..0....2..0..1....2..0..0....3..2..3
..3..2..2....2..3..2....2..3..3....3..0..0....2..0..0....3..2..0....2..3..3
..2..1..0....2..0..0....2..1..2....3..2..0....2..0..0....3..1..3....2..1..2
..2..1..0....2..0..0....2..1..2....2..3..3....3..2..2....2..3..3....2..0..3
..2..1..1....2..1..2....2..0..1....3..2..2....3..1..3....3..0..2....3..0..1
		
Showing 1-10 of 12 results. Next