cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A239995 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 13, 61, 256, 1117, 5012, 22592, 102336, 465662, 2123857, 9698188, 44317651, 202610817, 926532786, 4237612923, 19382872561, 88661747469, 405570672096, 1855255219753, 8486814865920, 38822908166872, 177595801954595
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 2 of A240000

Examples

			Some solutions for n=5
..3..3....0..3....0..3....3..3....3..3....3..3....3..3....0..0....0..3....3..3
..0..3....3..2....0..0....0..2....0..3....0..3....0..3....3..3....0..2....0..3
..0..3....2..1....3..3....0..0....2..2....0..3....3..2....3..3....3..2....3..3
..2..2....2..1....0..2....3..2....2..1....3..2....3..1....2..2....2..2....2..1
..2..0....2..0....2..0....3..2....2..0....3..3....2..1....3..1....0..0....3..1
		

Formula

Empirical: a(n) = 8*a(n-1) -20*a(n-2) +34*a(n-3) -84*a(n-4) +92*a(n-5) -68*a(n-6) +222*a(n-7) +13*a(n-8) -251*a(n-9) +25*a(n-10) -495*a(n-11) +485*a(n-12) -44*a(n-13) -180*a(n-14) +554*a(n-15) -648*a(n-16) +14*a(n-17) +152*a(n-18) -190*a(n-19) -140*a(n-20) +397*a(n-21) -273*a(n-22) +75*a(n-23) +167*a(n-24) -136*a(n-25) +27*a(n-26)

A239996 Number of n X 3 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 25, 190, 1372, 10405, 83029, 685898, 5825700, 50417154, 441675344, 3899065908, 34583504110, 307633283500, 2741312316323, 24453522555996, 218272506712305, 1949041652201113, 17407703510071602, 155496451538874916, 1389102990940616855, 12409927401794044619
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Examples

			Some solutions for n=5:
..0..0..3....3..3..0....0..3..3....0..3..3....0..0..3....0..3..3....3..3..0
..0..3..3....0..3..1....0..0..3....0..0..3....3..3..0....0..3..3....2..2..3
..0..2..1....0..2..0....3..2..3....0..3..3....3..3..2....0..2..1....0..2..0
..0..2..0....0..0..0....2..1..1....3..3..1....2..2..2....3..3..2....0..2..2
..3..3..2....2..0..2....2..1..2....3..1..3....3..1..3....0..2..1....2..2..2
		

Crossrefs

Column 3 of A240000.

A239997 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

5, 42, 526, 6527, 86360, 1225281, 18392485, 290513038, 4767970186, 80410934960, 1381071762609, 24002339457710, 420292066661594, 7394152265405038, 130463578696387397, 2306049013760669647, 40806118077181581732
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 4 of A240000

Examples

			Some solutions for n=4
..0..3..3..0....0..0..3..3....0..3..3..0....0..0..3..3....0..0..0..3
..0..2..2..3....3..3..2..2....0..0..2..1....3..3..2..2....3..3..0..0
..0..2..0..0....3..2..1..0....3..3..0..1....0..2..2..2....3..2..3..2
..3..3..2..0....3..1..3..2....3..3..1..3....3..2..3..3....2..1..3..1
		

A239998 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

6, 65, 1262, 27415, 635873, 15981219, 429788876, 12392346376, 378942837634, 12142601105289, 402528634881777, 13658205122550505, 470581987400700236, 16373110177063830815, 573193391287239428978, 20143454978776804982736
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Column 5 of A240000

Examples

			Some solutions for n=4
..0..3..3..0..0....0..0..0..3..3....3..3..0..0..0....0..3..3..0..0
..0..2..2..3..3....3..3..0..0..2....0..2..1..3..0....0..2..2..3..3
..3..2..0..3..0....0..3..1..2..2....2..2..0..3..3....0..0..0..0..0
..3..2..1..1..3....3..2..0..0..0....2..0..1..1..2....0..0..2..0..0
		

A240001 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

5, 13, 25, 42, 65, 95, 133, 180, 237, 305, 385, 478, 585, 707, 845, 1000, 1173, 1365, 1577, 1810, 2065, 2343, 2645, 2972, 3325, 3705, 4113, 4550, 5017, 5515, 6045, 6608, 7205, 7837, 8505, 9210, 9953, 10735, 11557, 12420, 13325, 14273, 15265, 16302
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Examples

			Some solutions for n=5:
..0..0..0..0..0....0..0..3..3..0....0..0..0..0..3....0..0..0..0..0
..3..3..0..0..0....0..0..3..2..3....0..0..0..3..3....0..0..0..0..3
		

Crossrefs

Row 2 of A240000.

Formula

Empirical: a(n) = (1/6)*n^3 + 1*n^2 + (23/6)*n.
Conjectures from Colin Barker, Oct 27 2018: (Start)
G.f.: x*(5 - 7*x + 3*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A240002 Number of 3 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

12, 61, 190, 526, 1262, 2766, 5647, 10878, 19971, 35180, 59780, 98414, 157524, 245879, 375214, 560995, 823326, 1188015, 1687817, 2363873, 3267365, 4461408, 6023201, 8046460, 10644157, 13951590, 18129810, 23369432, 29894858, 37968941
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Examples

			Some solutions for n=5:
..0..3..3..0..0....0..3..3..0..0....0..0..0..0..3....0..3..3..0..0
..0..3..3..1..3....0..0..3..1..3....0..3..3..0..0....0..3..2..3..3
..0..3..3..2..0....0..0..2..1..2....0..0..2..1..3....0..3..1..0..2
		

Crossrefs

Row 3 of A240000.

Formula

Empirical: a(n) = (1/40320)*n^8 + (1/2016)*n^7 + (7/576)*n^6 + (17/360)*n^5 + (6367/5760)*n^4 - (935/288)*n^3 + (28145/672)*n^2 - (114913/840)*n + 237 for n>6.
Conjectures from Colin Barker, Oct 27 2018: (Start)
G.f.: x*(12 - 47*x + 73*x^2 + 4*x^3 - 244*x^4 + 558*x^5 - 737*x^6 + 651*x^7 - 375*x^8 + 86*x^9 + 91*x^10 - 128*x^11 + 80*x^12 - 27*x^13 + 4*x^14) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>15.
(End)

A240003 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

28, 256, 1372, 6527, 27415, 104291, 363859, 1173141, 3539402, 10055917, 27072084, 69433880, 170442542, 402042194, 914489241, 2012051851, 4293710454, 8908363984, 18007433696, 35530979384, 68546844725, 129490989279, 239852605993
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 4 of A240000

Examples

			Some solutions for n=5
..0..0..0..3..3....0..3..3..0..0....0..0..0..0..0....0..0..0..0..3
..0..0..3..3..2....0..0..3..1..0....0..0..0..3..3....3..3..0..0..0
..3..3..0..2..2....0..3..3..1..3....3..3..0..2..2....2..2..3..3..0
..0..2..2..0..3....0..2..1..2..3....3..2..1..2..2....2..1..3..2..2
		

Formula

Empirical: a(n) = (1/30411275102208000)*n^19 + (1/914624815104000)*n^18 + (397/2134124568576000)*n^17 + (37/62768369664000)*n^16 + (2567/6276836966400)*n^15 - (77899/8966909952000)*n^14 + (121042813/188305108992000)*n^13 - (5389171/258660864000)*n^12 + (469998043/603542016000)*n^11 - (20022197893/877879296000)*n^10 + (5869313250161/9656672256000)*n^9 - (9505177279259/689762304000)*n^8 + (12579369755410273/47076277248000)*n^7 - (3647143231803217/840647808000)*n^6 + (50430900400493621/871782912000)*n^5 - (804068701944948239/1307674368000)*n^4 + (64298607619642973/12864852000)*n^3 - (25675604169133123/882161280)*n^2 + (25119199779142691/232792560)*n - 191027452 for n>20

A240004 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

66, 1117, 10405, 86360, 635873, 4267171, 26152051, 147439332, 775122753, 3821059149, 17769229031, 78356711183, 328981383567, 1319877073978, 5076715532082, 18776009861766, 66950026301586, 230700526217982
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 5 of A240000

Examples

			Some solutions for n=3
..0..3..3....0..3..3....0..0..3....0..0..3....0..0..3....3..3..0....3..3..0
..0..3..3....0..0..3....0..0..0....0..0..0....0..3..2....2..2..3....0..3..1
..3..3..1....0..0..3....3..3..0....0..3..2....0..3..1....2..2..0....2..2..0
..0..2..2....0..2..0....0..3..3....0..2..1....3..3..2....0..0..2....0..0..0
..0..2..1....0..0..0....0..2..2....0..2..2....2..1..3....0..0..2....2..0..1
		

Formula

Empirical polynomial of degree 44 (see link above)

A240005 Number of 6Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

156, 5012, 83029, 1225281, 15981219, 191691132, 2090236137, 20967693050, 195664738888, 1709973352188, 14072972956499, 109646306877457, 811882008990473, 5734156428747664, 38755892651094582, 251427858506122705
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Row 6 of A240000

Examples

			Some solutions for n=3
..3..3..0....0..3..3....3..3..0....3..3..0....3..3..0....3..3..0....0..3..3
..2..2..3....0..0..2....0..2..1....2..2..3....3..2..3....0..3..1....0..0..2
..0..2..0....3..3..2....3..2..1....2..2..0....3..2..0....0..3..1....3..3..0
..2..0..0....0..3..2....3..3..1....0..0..0....0..2..0....0..2..1....3..3..2
..2..2..2....0..2..1....0..2..0....2..0..0....2..2..0....3..2..0....3..2..0
..0..0..2....0..2..2....2..0..0....2..2..2....2..0..2....3..1..2....0..2..0
		

A239994 Number of n X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 13, 190, 6527, 635873, 191691132, 182333502325
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Diagonal of A240000.

Examples

			Some solutions for n=4
..3..3..0..0....0..3..3..0....0..3..3..0....3..3..0..0....3..3..0..0
..0..3..3..0....3..2..3..3....0..0..3..1....0..3..1..3....0..2..1..3
..3..2..0..1....0..2..2..0....0..0..2..0....0..3..2..0....0..2..1..2
..3..1..0..2....2..2..0..0....3..3..0..0....0..0..2..2....0..2..2..0
		

Crossrefs

Cf. A240000.
Showing 1-10 of 12 results. Next