A240002 Number of 3 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.
12, 61, 190, 526, 1262, 2766, 5647, 10878, 19971, 35180, 59780, 98414, 157524, 245879, 375214, 560995, 823326, 1188015, 1687817, 2363873, 3267365, 4461408, 6023201, 8046460, 10644157, 13951590, 18129810, 23369432, 29894858, 37968941
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..3..3..0..0....0..3..3..0..0....0..0..0..0..3....0..3..3..0..0 ..0..3..3..1..3....0..0..3..1..3....0..3..3..0..0....0..3..2..3..3 ..0..3..3..2..0....0..0..2..1..2....0..0..2..1..3....0..3..1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A240000.
Formula
Empirical: a(n) = (1/40320)*n^8 + (1/2016)*n^7 + (7/576)*n^6 + (17/360)*n^5 + (6367/5760)*n^4 - (935/288)*n^3 + (28145/672)*n^2 - (114913/840)*n + 237 for n>6.
Conjectures from Colin Barker, Oct 27 2018: (Start)
G.f.: x*(12 - 47*x + 73*x^2 + 4*x^3 - 244*x^4 + 558*x^5 - 737*x^6 + 651*x^7 - 375*x^8 + 86*x^9 + 91*x^10 - 128*x^11 + 80*x^12 - 27*x^13 + 4*x^14) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>15.
(End)