This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240008 #16 Apr 02 2017 03:28:52 %S A240008 1,1,3,14,65,301,1419,6786,32749,159108,777224,3813745,18783934, %T A240008 92811389,459832745,2283628771,11364500644,56659024320,282939657220, %U A240008 1414980598167,7085590965083,35523567248527,178289298823240,895697952270827,4503912366189604 %N A240008 Number of Dyck paths of semilength 2n such that the area between the x-axis and the path is 4n. %H A240008 Alois P. Heinz, <a href="/A240008/b240008.txt">Table of n, a(n) for n = 0..500</a> %F A240008 a(n) = A129182(2n,4n) = A239927(4n,2n). %F A240008 a(n) ~ c * d^n / sqrt(n), where d = 5.134082940807122222912767966569622... and c = 0.198313337349936555418443931967... - _Vaclav Kotesovec_, Apr 01 2014 %p A240008 b:= proc(x, y, k) option remember; %p A240008 `if`(y<0 or y>x or k<0 or k>x^2/2-(y-x)^2/4, 0, %p A240008 `if`(x=0, 1, b(x-1, y-1, k-y+1/2) +b(x-1, y+1, k-y-1/2))) %p A240008 end: %p A240008 a:= n-> b(4*n, 0, 4*n): %p A240008 seq(a(n), n=0..30); %t A240008 b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0 || k>x^2/2-(y-x)^2/4, 0, If[x==0, 1, b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]]; %t A240008 a[n_] := b[4n, 0, 4n]; %t A240008 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 01 2017, translated from Maple *) %K A240008 nonn %O A240008 0,3 %A A240008 _Alois P. Heinz_, Mar 30 2014