cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240020 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(2n-1).

This page as a plain text file.
%I A240020 #27 Dec 31 2020 11:11:15
%S A240020 1,2,2,3,3,4,4,5,3,5,6,6,7,7,8,8,8,9,9,10,10,11,5,5,11,12,12,13,5,13,
%T A240020 14,6,6,14,15,15,16,16,17,7,7,17,18,12,18,19,19,20,8,8,20,21,21,22,22,
%U A240020 23,32,23,24,24,25,7,25,26,10,10,26,27,27,28,8,8,28,29,11,11,29,30,30,31,31,32,12,26,12,32,33,9,9,33,34,34
%N A240020 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(2n-1).
%C A240020 Row n lists the parts of the symmetric representation of A008438(n-1).
%C A240020 Also these are the parts from the odd-indexed rows of A237270.
%C A240020 Also these are the parts in the quadrants 1 and 3 of the spiral described in A239660, see example.
%C A240020 Row sums give A008438.
%C A240020 The length of row n is A237271(2n-1).
%C A240020 Both column 1 and the right border are equal to n.
%C A240020 Note that also the sequence can be represented in a quadrant.
%C A240020 We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
%e A240020 1;
%e A240020 2, 2;
%e A240020 3, 3;
%e A240020 4, 4;
%e A240020 5, 3, 5;
%e A240020 6, 6;
%e A240020 7, 7;
%e A240020 8, 8, 8;
%e A240020 9, 9;
%e A240020 10, 10;
%e A240020 11, 5, 5, 11;
%e A240020 12, 12;
%e A240020 13, 5, 13;
%e A240020 14, 6, 6, 14;
%e A240020 15, 15;
%e A240020 16, 16;
%e A240020 17, 7, 7, 17;
%e A240020 18, 12, 18;
%e A240020 19, 19;
%e A240020 20, 8, 8, 20;
%e A240020 21, 21;
%e A240020 22, 22;
%e A240020 23, 32, 23;
%e A240020 24, 24;
%e A240020 25, 7, 25;
%e A240020 ...
%e A240020 Illustration of initial terms (rows 1..8):
%e A240020 .
%e A240020 .                                   _ _ _ _ _ _ _ 7
%e A240020 .                                  |_ _ _ _ _ _ _|
%e A240020 .                                                |
%e A240020 .                                                |_ _
%e A240020 .                                   _ _ _ _ _ 5      |_
%e A240020 .                                  |_ _ _ _ _|         |
%e A240020 .                                            |_ _ 3    |_ _ _ 7
%e A240020 .                                            |_  |         | |
%e A240020 .                                   _ _ _ 3    |_|_ _ 5    | |
%e A240020 .                                  |_ _ _|         | |     | |
%e A240020 .                                        |_ _ 3    | |     | |
%e A240020 .                                          | |     | |     | |
%e A240020 .                                   _ 1    | |     | |     | |
%e A240020 .     _       _       _       _    |_|     |_|     |_|     |_|
%e A240020 .    | |     | |     | |     | |
%e A240020 .    | |     | |     | |     |_|_ _
%e A240020 .    | |     | |     | |    2  |_ _|
%e A240020 .    | |     | |     |_|_     2
%e A240020 .    | |     | |    4    |_
%e A240020 .    | |     |_|_ _        |_ _ _ _
%e A240020 .    | |    6      |_      |_ _ _ _|
%e A240020 .    |_|_ _ _        |_   4
%e A240020 .   8      | |_ _      |
%e A240020 .          |_    |     |_ _ _ _ _ _
%e A240020 .            |_  |_    |_ _ _ _ _ _|
%e A240020 .           8  |_ _|  6
%e A240020 .                  |
%e A240020 .                  |_ _ _ _ _ _ _ _
%e A240020 .                  |_ _ _ _ _ _ _ _|
%e A240020 .                 8
%e A240020 .
%e A240020 The figure shows the quadrants 1 and 3 of the spiral described in A239660.
%e A240020 For n = 5 we have that 2*5 - 1 = 9 and the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 5 is [5, 3, 5], see the third arm of the spiral in the first quadrant.
%e A240020 The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
%Y A240020 Cf. A000203, A005408, A008438, A112610, A196020, A236104, A237048, A237270, A237271, A237591, A237593, A239053, A239660, A239931, A239933, A244050, A245092, A262626.
%K A240020 nonn,tabf
%O A240020 1,2
%A A240020 _Omar E. Pol_, Mar 31 2014