This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240027 #21 Jan 06 2021 08:28:00 %S A240027 1,1,2,2,4,4,5,7,9,9,13,14,16,20,23,25,32,34,38,45,51,55,65,70,77,89, %T A240027 99,106,122,131,143,161,177,189,211,229,248,272,298,317,349,378,406, %U A240027 440,479,511,554,597,640,686,744,792,850,913,973,1039,1122,1189,1268,1358,1444,1532,1646,1742,1847,1975,2094,2210,2366 %N A240027 Number of partitions of n such that the successive differences of consecutive parts are strictly increasing. %C A240027 Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3. %C A240027 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly increasing. The Heinz numbers of these partitions are given by A325456. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly increasing, which is the author's interpretation. - _Gus Wiseman_, May 03 2019 %H A240027 Fausto A. C. Cariboni, <a href="/A240027/b240027.txt">Table of n, a(n) for n = 0..800</a> (terms 0..260 from Joerg Arndt) %H A240027 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A240027 There are a(15) = 25 such partitions of 15: %e A240027 01: [ 1 1 2 4 7 ] %e A240027 02: [ 1 1 2 11 ] %e A240027 03: [ 1 1 3 10 ] %e A240027 04: [ 1 1 4 9 ] %e A240027 05: [ 1 1 13 ] %e A240027 06: [ 1 2 4 8 ] %e A240027 07: [ 1 2 12 ] %e A240027 08: [ 1 3 11 ] %e A240027 09: [ 1 4 10 ] %e A240027 10: [ 1 14 ] %e A240027 11: [ 2 2 3 8 ] %e A240027 12: [ 2 2 4 7 ] %e A240027 13: [ 2 2 11 ] %e A240027 14: [ 2 3 10 ] %e A240027 15: [ 2 4 9 ] %e A240027 16: [ 2 13 ] %e A240027 17: [ 3 3 9 ] %e A240027 18: [ 3 4 8 ] %e A240027 19: [ 3 12 ] %e A240027 20: [ 4 4 7 ] %e A240027 21: [ 4 11 ] %e A240027 22: [ 5 10 ] %e A240027 23: [ 6 9 ] %e A240027 24: [ 7 8 ] %e A240027 25: [ 15 ] %t A240027 Table[Length[Select[IntegerPartitions[n],Less@@Differences[#]&]],{n,0,30}] (* _Gus Wiseman_, May 03 2019 *) %o A240027 (Ruby) %o A240027 def partition(n, min, max) %o A240027 return [[]] if n == 0 %o A240027 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} %o A240027 end %o A240027 def f(n) %o A240027 return 1 if n == 0 %o A240027 cnt = 0 %o A240027 partition(n, 1, n).each{|ary| %o A240027 ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} %o A240027 cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0 %o A240027 } %o A240027 cnt %o A240027 end %o A240027 def A240027(n) %o A240027 (0..n).map{|i| f(i)} %o A240027 end %o A240027 p A240027(50) # _Seiichi Manyama_, Oct 13 2018 %Y A240027 Cf. A240026 (nondecreasing differences). %Y A240027 Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing). %Y A240027 Cf. A049988, A179269, A320466, A320470, A325325, A325357, A325391, A325456. %K A240027 nonn %O A240027 0,3 %A A240027 _Joerg Arndt_, Mar 31 2014