cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240034 Number of n X 3 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

4, 6, 16, 16, 42, 44, 114, 122, 314, 340, 872, 950, 2432, 2658, 6798, 7442, 19024, 20844, 53270, 58392, 149210, 163594, 418006, 458356, 1171124, 1284250, 3281268, 3598338, 9193694, 10082246, 25759848, 28249720, 72177042, 79153804, 202234930
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Examples

			Some solutions for n=3:
..1..2..1....1..2..1....2..1..1....2..1..2....1..2..2....2..1..2....2..1..1
..2..0..0....2..0..0....1..0..0....1..0..0....2..0..0....1..0..0....1..0..0
..2..1..2....1..0..0....1..0..0....2..0..0....2..0..0....1..0..0....2..0..0
		

Crossrefs

Column 3 of A240039.

Formula

Empirical: a(n) = 4*a(n-2) - 3*a(n-4) -a(n-6) for n>7.
Empirical g.f.: 2*x*(2 + 3*x - 4*x^3 - 5*x^4 - x^5 - x^6) / (1 - 4*x^2 + 3*x^4 + x^6). - Colin Barker, Oct 27 2018

A240035 Number of nX4 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

4, 4, 16, 18, 52, 62, 162, 204, 530, 672, 1736, 2198, 5706, 7202, 18780, 23604, 61718, 77292, 202468, 252872, 663072, 826512, 2168300, 2698978, 7082068, 8806712, 23110072, 28718278, 75360086, 93603560, 245616936, 304976256, 800224510
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Comments

Column 4 of A240039

Examples

			Some solutions for n=3
..2..1..2..1....1..2..2..1....2..1..2..1....1..2..1..2....1..2..1..2
..1..0..0..0....2..0..0..0....1..0..0..0....2..0..0..0....2..0..0..0
..1..2..1..2....2..0..0..0....1..2..1..0....2..1..2..1....2..1..2..0
		

Formula

Empirical: a(n) = 11*a(n-2) -49*a(n-4) +117*a(n-6) -177*a(n-8) +214*a(n-10) -239*a(n-12) +207*a(n-14) -135*a(n-16) +108*a(n-18) -82*a(n-20) +29*a(n-22) -3*a(n-24) for n>27

A240036 Number of nX5 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

8, 10, 42, 52, 154, 178, 494, 600, 1606, 2014, 5262, 6690, 17464, 22360, 58342, 74736, 194784, 249738, 650892, 834326, 2174114, 2786028, 7260062, 9299282, 24230362, 31026484, 80832010, 103476740, 269526292, 344976344, 898349934, 1149695244
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Comments

Column 5 of A240039

Examples

			Some solutions for n=3
..1..2..1..2..1....1..2..1..2..1....1..2..1..2..1....1..2..1..2..1
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..1..0..0..0..2....1..0..2..1..0....1..0..0..0..0....2..1..2..0..0
		

Formula

Empirical: a(n) = 24*a(n-2) -254*a(n-4) +1540*a(n-6) -5743*a(n-8) +12572*a(n-10) -9844*a(n-12) -29846*a(n-14) +118468*a(n-16) -204106*a(n-18) +182686*a(n-20) +18168*a(n-22) -371269*a(n-24) +732749*a(n-26) -915915*a(n-28) +882644*a(n-30) -769800*a(n-32) +661777*a(n-34) -565432*a(n-36) +534609*a(n-38) -520131*a(n-40) +330402*a(n-42) -7073*a(n-44) -202359*a(n-46) +322607*a(n-48) -341400*a(n-50) +75883*a(n-52) +180888*a(n-54) -214325*a(n-56) +211488*a(n-58) -133525*a(n-60) +39168*a(n-62) -41213*a(n-64) +32114*a(n-66) +51*a(n-68) -15949*a(n-70) +5028*a(n-72) +5318*a(n-74) +1581*a(n-76) -642*a(n-78) +392*a(n-80) -233*a(n-82) -14*a(n-84) +4*a(n-86) for n>89

A240037 Number of nX6 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

8, 8, 44, 62, 178, 282, 710, 1074, 2770, 4162, 10836, 15764, 41374, 59680, 156886, 225150, 588814, 847438, 2209382, 3180402, 8266052, 11933946, 30940004, 44734494, 115726028, 167666138, 433004540, 628085454, 1619697032, 2352404846
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Comments

Column 6 of A240039

Examples

			Some solutions for n=3
..2..1..2..1..1..2....1..2..1..2..2..1....1..2..1..2..1..2....1..2..1..2..1..2
..1..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0
..1..0..0..0..0..0....1..0..0..0..0..0....2..0..0..1..2..0....2..0..0..0..0..0
		

A240038 Number of nX7 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

16, 20, 114, 162, 494, 710, 1976, 2884, 7958, 12074, 31824, 49078, 130758, 197208, 535668, 803976, 2179014, 3283200, 8870448, 13320072, 36010660, 54089046, 145864864, 219566360, 590450318, 889464830, 2389662890, 3599725594
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Comments

Column 7 of A240039

Examples

			Some solutions for n=3
..1..2..1..2..1..2..1....2..1..2..1..2..1..1....2..1..1..2..2..1..1
..2..0..0..0..0..0..0....1..0..0..0..0..0..2....1..0..0..0..0..0..0
..2..0..0..1..2..0..0....2..0..1..2..0..0..1....2..0..0..0..0..0..0
		

A240033 Number of n X n 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3.

Original entry on oeis.org

2, 2, 16, 18, 154, 282, 1976, 5706, 42470, 147092, 1196210, 5215010, 48697758, 245354078, 2815029508, 16378986516
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Comments

Diagonal of A240039

Examples

			Some solutions for n=3
..2..1..1....1..2..1....2..1..2....1..2..2....2..1..2....1..2..2....1..2..1
..1..0..0....2..0..0....1..0..0....2..0..1....1..0..0....2..0..0....2..0..0
..2..0..0....1..0..0....2..0..0....1..0..2....1..0..0....1..0..0....1..0..2
		
Showing 1-6 of 6 results.