cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240041 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

This page as a plain text file.
%I A240041 #6 Jun 02 2025 09:38:48
%S A240041 2,4,10,22,50,119,276,637,1473,3355,7682,17497,39777,90406,205111,
%T A240041 465359,1054871,2390302,5415591,12265608,27777095,62895884,142401878,
%U A240041 322392952,729835421,1652150714,3739914222,8465684665,19162662378,43375394510
%N A240041 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.
%C A240041 Column 2 of A240046
%H A240041 R. H. Hardin, <a href="/A240041/b240041.txt">Table of n, a(n) for n = 1..210</a>
%F A240041 Empirical: a(n) = 3*a(n-2) +10*a(n-3) +3*a(n-4) -12*a(n-5) -46*a(n-6) -36*a(n-7) +12*a(n-8) +107*a(n-9) +87*a(n-10) +2*a(n-11) -145*a(n-12) -138*a(n-13) -48*a(n-14) +147*a(n-15) +185*a(n-16) +89*a(n-17) -94*a(n-18) -210*a(n-19) -111*a(n-20) +40*a(n-21) +176*a(n-22) +85*a(n-23) +30*a(n-24) -77*a(n-25) -47*a(n-26) -57*a(n-27) +14*a(n-29) +21*a(n-30) +14*a(n-31) -3*a(n-32) +2*a(n-33) -5*a(n-34) +a(n-35) +2*a(n-36) +a(n-37) -a(n-38) for n>40
%e A240041 All solutions for n=3
%e A240041 ..3..2....3..2....2..3....3..2....2..3....3..2....2..3....3..2....3..2....2..3
%e A240041 ..2..0....1..0....3..0....1..0....1..0....1..0....3..0....2..0....2..0....3..0
%e A240041 ..2..0....2..0....2..0....2..3....2..0....3..0....3..0....2..3....3..0....3..2
%K A240041 nonn
%O A240041 1,1
%A A240041 _R. H. Hardin_, Mar 31 2014