cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240046 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 2, 2, 4, 4, 4, 6, 9, 10, 6, 8, 20, 26, 22, 8, 14, 33, 72, 93, 50, 14, 20, 76, 174, 346, 309, 119, 20, 30, 117, 597, 1110, 1496, 1043, 276, 30, 48, 232, 1187, 5780, 7514, 8567, 3597, 637, 48, 70, 398, 3115, 17297, 55034, 61858, 46381, 12865, 1473, 70, 108, 675, 7269
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2014

Keywords

Examples

			Table starts
..2....2......4.......6.........8..........14..........20..........30
..2....4......9......20........33..........76.........117.........232
..4...10.....26......72.......174.........597........1187........3115
..6...22.....93.....346......1110........5780.......17297.......57800
..8...50....309....1496......7514.......55034......236282.....1248277
.14..119...1043....8567.....61858......640643.....4593632....35084947
.20..276...3597...46381....515675.....8300260...104619164..1204711882
.30..637..12865..268672...4743056...119956268..2789729009.49892724623
.48.1473..45491.1556758..45158204..1944727891.80805084589
.70.3355.163686.9438166.453408919.34311716212
Some solutions for n=3 k=4
..2..3..2..2....3..2..2..2....2..3..3..3....2..3..2..2....2..3..3..3
..3..1..1..0....2..0..0..0....3..1..2..0....3..1..1..3....3..1..1..2
..3..1..2..3....2..0..0..0....2..1..2..0....2..1..1..2....3..2..2..2
		

Crossrefs

Row and Column 1 are A239851

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 38] for n>40
Empirical for row n:
n=1: a(n) = a(n-2) +2*a(n-3)
n=2: [order 18] for n>22
n=3: [order 76] for n>96