cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240056 Number of partitions of n such that m(1) > m(2), where m = multiplicity.

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 5, 9, 12, 16, 24, 32, 42, 59, 77, 100, 134, 173, 221, 288, 366, 463, 590, 741, 926, 1163, 1444, 1787, 2215, 2726, 3342, 4101, 5003, 6087, 7402, 8964, 10827, 13069, 15718, 18865, 22617, 27041, 32263, 38453, 45719, 54264, 64326, 76102, 89884
Offset: 0

Views

Author

Clark Kimberling, Mar 31 2014

Keywords

Examples

			a(7) counts these 9 partitions: 61, 511, 4111, 331, 3211, 31111, 22111, 211111, 1111111.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 2]], {n, 0, z}]  (* A182713 *)
    t2 = Table[Count[f[n], p_ /; Count[p, 1] <= Count[p, 2]], {n, 0, z}] (* A182713(n+2) *)
    t3 = Table[Count[f[n], p_ /; Count[p, 1] == Count[p, 2]], {n, 0, z}] (* A174455 *)
    t4 = Table[Count[f[n], p_ /; Count[p, 1] > Count[p, 2]], {n, 0, z}]  (* A240056 *)
    t5 = Table[Count[f[n], p_ /; Count[p, 1] >= Count[p, 2]], {n, 0, z}] (* A240056(n+1) *)

Formula

a(n) = A000041(n) - A182713(n+2) = a(n+1) - A174455(n) for n >= 0.
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2 * 3^(3/2) * n). - Vaclav Kotesovec, Jan 15 2022