This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240068 #10 Apr 01 2014 12:23:39 %S A240068 24,32,48,64,96,112,144,160,192,240,256,304,336,352,384,432,480,496, %T A240068 544,576,592,640,672,720,784,816,832,864,880,912,1024,1056,1104,1120, %U A240068 1200,1216,1264,1312,1344,1392,1440,1456,1536,1552,1584,1600,1696,1792 %N A240068 Number of prime Lipschitz quaternions having norm prime(n). %C A240068 This sequence counts all prime Lipschitz quaternions having a given norm; A239394 counts only the prime nonnegative Lipschitz quaternions. %H A240068 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hurwitz_quaternion">Hurwitz quaternion</a> %F A240068 a(n) = 8 * (prime(n) + 1) = 8 * A008864(n). %t A240068 (* first << Quaternions` *) %t A240068 mx = 17; lst = Flatten[Table[{a, b, c, d}, {a, -mx, mx}, {b, -mx, mx}, {c, -mx, mx}, {d, -mx, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; q2 = Sort[q, Norm[#1] < Norm[#2] &]; Take[Transpose[Tally[(Norm /@ q2)^2]][[2]], mx] %Y A240068 Cf. A239393 (prime Lipschitz quaternions), A239394. %Y A240068 Cf. A055669 (number of prime Hurwitz quaternions of norm prime(n)). %K A240068 nonn %O A240068 1,1 %A A240068 _T. D. Noe_, Apr 01 2014