This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240071 #12 Feb 16 2025 08:33:21 %S A240071 1,1,2,1,1,2,2,2,4,2,2,4,2,1,1,1,4,2,1,4,3,3,6,3,3,6,3,2,6,3,1,1,1,1, %T A240071 6,3,1,2,1,6,3,1,6,4,4,8,4,4,8,4,2,1,3,1,2,8,4,2,8,4,1,1,2,1,1,8,4,1, %U A240071 2,4,2,1,8,4,1,3,1,8,4,1,8,5,5,10,5,5,10 %N A240071 Irregular triangle of the simple continued fraction of sqrt(n). %H A240071 T. D. Noe, <a href="/A240071/b240071.txt">Rows n = 1..1000 of irregular triangle, flattened</a> %H A240071 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/SimpleContinuedFraction.html">Simple continued fraction</a> %e A240071 Irregular table in which the first term is the non-repeating part: %e A240071 {1}, %e A240071 {1, 2}, %e A240071 {1, 1, 2}, %e A240071 {2}, %e A240071 {2, 4}, %e A240071 {2, 2, 4}, %e A240071 {2, 1, 1, 1, 4}, %e A240071 {2, 1, 4}, %e A240071 {3}, %e A240071 {3, 6}, %e A240071 {3, 3, 6}, %e A240071 {3, 2, 6}, %e A240071 {3, 1, 1, 1, 1, 6}, %e A240071 {3, 1, 2, 1, 6} %t A240071 Table[Flatten[ContinuedFraction[Sqrt[n]]], {n, 30}] %Y A240071 Cf. A067280 (length of the continued fraction of sqrt(n)). %K A240071 nonn,tabf %O A240071 1,3 %A A240071 _T. D. Noe_, Apr 04 2014