cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240075 Lexicographically earliest nonnegative increasing sequence such that no four terms have constant second differences.

This page as a plain text file.
%I A240075 #21 Jan 17 2016 09:28:55
%S A240075 0,1,2,4,5,8,15,16,17,20,44,51,52,53,56,58,64,78,166,167,192,195,196,
%T A240075 200,202,203,206,217,226,248,249,276,312,649,657,678,681,682,715,726,
%U A240075 740,743,747,750,771,790,830,833,836,838,842,854,875,908,911,971
%N A240075 Lexicographically earliest nonnegative increasing sequence such that no four terms have constant second differences.
%H A240075 Vincenzo Librandi and T. D. Noe, <a href="/A240075/b240075.txt">Table of n, a(n) for n = 1..755</a> (first 123 terms from Vincenzo Librandi)
%t A240075 t = {0, 1, 2}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}]; If[! MemberQ[Flatten[Table[Differences[i, 3], {i, s}]], 0], AppendTo[t, n]], {n, 3, 1000}]; t
%o A240075 (PARI) A240075(n, show=0, L=4, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v<n, show&&print1(v[#v]", "); v=concat(v, v[#v]); while( v[#v]++, forvec( i=vector(L, j, [if(j<L, j, #v), #v]), d=D(vecextract(v, i)); m=o; while(m--&&#Set(d=D(d))>1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ _M. F. Hasler_, Jan 12 2016
%Y A240075 For the positive sequence, see A240555, which is this sequence plus 1.
%Y A240075 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
%Y A240075 3-term AP: A005836 (>=0), A003278 (>0);
%Y A240075 4-term AP: A005839 (>=0), A005837 (>0);
%Y A240075 5-term AP: A020654 (>=0), A020655 (>0);
%Y A240075 6-term AP: A020656 (>=0), A005838 (>0);
%Y A240075 7-term AP: A020657 (>=0), A020658 (>0);
%Y A240075 8-term AP: A020659 (>=0), A020660 (>0);
%Y A240075 9-term AP: A020661 (>=0), A020662 (>0);
%Y A240075 10-term AP: A020663 (>=0), A020664 (>0).
%Y A240075 For the analog sequence which avoids 5-term subsequences of constant third differences, see A240556 (>=0) and A240557 (>0).
%K A240075 nonn
%O A240075 1,3
%A A240075 _T. D. Noe_, Apr 09 2014
%E A240075 Definition corrected by _N. J. A. Sloane_ and _M. F. Hasler_, Jan 04 2016.