This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240077 #5 Apr 06 2014 04:18:10 %S A240077 1,1,1,2,3,4,7,9,14,19,28,36,53,68,94,122,165,210,280,354,462,583,749, %T A240077 936,1192,1481,1862,2303,2871,3527,4366,5336,6555,7977,9737,11790, %U A240077 14317,17260,20845,25033,30093,35993,43087,51348,61216,72711,86362,102236 %N A240077 Number of partitions of n such that m(greatest part) <= m(1), where m = multiplicity. %F A240077 a(n) = A240076(n) + A240078(n) for n >= 0. %e A240077 a(7) counts these 9 partitions: 61, 511, 421, 4111, 3211, 31111, 22111, 211111, 1111111. %t A240077 z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, Max[p]] < Count[p, 1]], {n, 0, z}] (* A240076 *) %t A240077 t2 = Table[Count[f[n], p_ /; Count[p, Max[p]] <= Count[p, 1]], {n, 0, z}] (* A240077 *) %t A240077 t3 = Table[Count[f[n], p_ /; Count[p, Max[p]] == Count[p, 1]], {n, 0, z}] (* A240078 *) %t A240077 t4 = Table[Count[f[n], p_ /; Count[p, Max[p]] > Count[p, 1]], {n, 0, z}] (* A117995 *) %t A240077 t5 = Table[Count[f[n], p_ /; Count[p, Max[p]] >= Count[p, 1]], {n, 0, z}] (* A240080 *) %Y A240077 Cf. A240076, A240078, A117995, A240080. %K A240077 nonn,easy %O A240077 0,4 %A A240077 _Clark Kimberling_, Apr 01 2014