cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240084 Primes p such that p^4-p^3-p^2-p-1 is prime.

This page as a plain text file.
%I A240084 #12 Nov 23 2024 12:58:30
%S A240084 3,11,17,41,59,71,101,113,179,233,293,347,389,449,461,503,521,617,641,
%T A240084 683,797,953,1319,1439,1487,1493,1823,1877,1973,2087,2339,2351,2633,
%U A240084 2663,2789,2801,2909,2927,2957,2963,2999,3011,3167,3467,3527,3677,3851,3881,3923
%N A240084 Primes p such that p^4-p^3-p^2-p-1 is prime.
%H A240084 Harvey P. Dale, <a href="/A240084/b240084.txt">Table of n, a(n) for n = 1..1000</a>
%e A240084 3^4-3^3-3^2-3-1 = 41 is prime. Thus, 3 is a member of this sequence.
%t A240084 Select[Prime[Range[600]],PrimeQ[#^4-#^3-#^2-#-1]&] (* _Harvey P. Dale_, Nov 23 2024 *)
%o A240084 (Python)
%o A240084 import sympy
%o A240084 from sympy import isprime
%o A240084 {print(p) for p in range(10**4) if isprime(p**4-p**3-p**2-p-1) and isprime(p)}
%o A240084 (PARI) s=[]; forprime(p=2, 4000, if(isprime(p^4-p^3-p^2-p-1), s=concat(s, p))); s \\ _Colin Barker_, Apr 01 2014
%Y A240084 Cf. A173179.
%K A240084 nonn
%O A240084 1,1
%A A240084 _Derek Orr_, Mar 31 2014