This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240085 #28 Jan 10 2025 01:16:54 %S A240085 1,0,1,1,2,1,9,11,34,53,108,169,400,680,1530,2984,6362,12498,25766, %T A240085 50093,102126,199309,400288,788227,1581584,3135117,6286310,12532861, %U A240085 25121292,50184582,100627207,201208477,403170900,806534560,1615151111,3231224804,6467909442 %N A240085 Number of compositions of n in which no part is unique (every part appears at least twice). %D A240085 S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009. %H A240085 Alois P. Heinz and Vaclav Kotesovec, <a href="/A240085/b240085.txt">Table of n, a(n) for n = 0..2100</a> (first 500 terms from Alois P. Heinz) %H A240085 Vaclav Kotesovec, <a href="/A240085/a240085.jpg">Graph a(n)/2^n</a> %F A240085 G.f.: 1 + Sum_{m>1} C(m,x)/(1-x^m) where C(m,x) = x^m + Sum_{i=2..m-2} m! * x^m * C(m-i,x)/(i! * (m-i)! * (1 - x^(m-i))). - _John Tyler Rascoe_, Jan 09 2025 %e A240085 a(6) = 9 because we have: 3+3, 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 1+1+1+1+1+1. %p A240085 b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0, %p A240085 b(n, i-1, t) +add(b(n-i*j, i-1, t+j)/j!, j=2..n/i))) %p A240085 end: %p A240085 a:= n-> b(n$2, 0): %p A240085 seq(a(n), n=0..40); # _Alois P. Heinz_, Mar 31 2014 %t A240085 Table[Length[Level[Map[Permutations,Select[IntegerPartitions[n], Apply[And,Table[Count[#,#[[i]]]>1,{i,1,Length[#]}]]&]],{2}]],{n,0,20}] %t A240085 (* Second program: *) %t A240085 b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1, 0, b[n, i - 1, t] + Sum[b[n - i*j, i - 1, t + j]/j!, {j, 2, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *) %Y A240085 Cf. A007690. %K A240085 nonn %O A240085 0,5 %A A240085 _Geoffrey Critzer_, Mar 31 2014 %E A240085 More terms from _Alois P. Heinz_, Mar 31 2014