A240090 Number of partitions of n that have integer contraharmonic mean.
1, 2, 2, 3, 2, 6, 3, 7, 5, 8, 5, 17, 8, 21, 14, 31, 18, 49, 28, 56, 42, 90, 52, 146, 77, 189, 118, 257, 158, 370, 219, 530, 313, 724, 412, 999, 578, 1372, 809, 1837, 1094, 2515, 1472, 3387, 1948, 4584, 2656, 6145, 3527, 8114, 4665, 10784, 6225, 14196, 8150
Offset: 1
Examples
a(10) counts these 8 partitions: [10], [6,1,1,1,1], [5,5], [5,1,1,1,1,1], [4,3,2,1], [3,2,2,1,1,1], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1]; e.g., [4,3,2,1] has contraharmonic mean (16 + 9 + 4 + 1)/10 = 3.
Crossrefs
Cf. A240089.
Programs
-
Mathematica
z = 15; ColumnForm[t = Map[Select[IntegerPartitions[#], IntegerQ[RootMeanSquare[#]] &] &, Range[z]]] (* shows the partitions *) t1 = Map[Length, t] (* A240089 *) ColumnForm[u = Map[Select[IntegerPartitions[#], IntegerQ[ContraharmonicMean[#]] &] &, Range[z]]] (* shows the partitions *) t2 = Map[Length, u] (* A240090 *)
Comments