cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240110 Primes p such that p+2 and p^3+2 are also prime.

This page as a plain text file.
%I A240110 #10 Mar 14 2017 17:11:03
%S A240110 3,5,29,71,311,419,431,1031,1091,1151,1451,1931,2339,3371,3461,4001,
%T A240110 4421,4799,5651,6269,6551,6569,6761,6779,6869,7559,7589,8219,9011,
%U A240110 9281,10301,11069,11489,11549,12161,12239,12251,12539,14081,15641,17189,18059,18119,18521
%N A240110 Primes p such that p+2 and p^3+2 are also prime.
%C A240110 All the terms in the sequence, except a(1), are congruent to 2 mod 3.
%H A240110 K. D. Bajpai, <a href="/A240110/b240110.txt">Table of n, a(n) for n = 1..3166</a>
%p A240110 KD := proc() local a,b,d; a:=ithprime(n);  b:=a+2;  d:=a^3+2;  if isprime(b)and isprime(d) then RETURN (a);  fi;  end:  seq(KD(), n=1..10000);
%t A240110 Select[Prime[Range[2200]],AllTrue[{#+2,#^3+2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 14 2017 *)
%o A240110 (PARI) s=[]; forprime(p=2, 20000, if(isprime(p+2) && isprime(p^3+2), s=concat(s, p))); s \\ _Colin Barker_, Apr 01 2014
%Y A240110 Cf. A000040, A048637, A140454, A175234, A236687, A236688.
%K A240110 nonn
%O A240110 1,1
%A A240110 _K. D. Bajpai_, Apr 01 2014