cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240111 Numbers for which the value of the Dedekind psi function (A001615) are less than the value of the infinitary Dedekind psi function (A049417).

This page as a plain text file.
%I A240111 #37 Feb 13 2025 08:27:13
%S A240111 8,24,27,32,40,54,56,72,88,96,104,120,125,128,135,136,152,160,168,184,
%T A240111 189,200,216,224,232,243,248,250,264,270,280,296,297,312,328,343,344,
%U A240111 351,352,360,375,376,378,384,392,408,416,424,440,456,459,472,480,486
%N A240111 Numbers for which the value of the Dedekind psi function (A001615) are less than the value of the infinitary Dedekind psi function (A049417).
%C A240111 Numbers k for which Product_{p|k} (1 + 1/p) < Product_{q is in Q_k} (1 + 1/q), where {p} are primes, {q} are terms of A050376 and Q_k is the set of distinct q's whose product is k.
%C A240111 The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 10, 108, 1072, 10679, 106722, 1067287, 10672851, 106728514, 1067285714, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1067285... . - _Amiram Eldar_, Feb 13 2025
%H A240111 Amiram Eldar, <a href="/A240111/b240111.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Peter J. C. Moses)
%t A240111 f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct < Times @@ f1 @@@ fct]; Select[Range[500], q] (* _Amiram Eldar_, Feb 13 2025 *)
%o A240111 (PARI) isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) < prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ _Amiram Eldar_, Feb 13 2025
%Y A240111 Cf. A001615, A049417, A050376.
%Y A240111 Complement of A240112 within the nonsquarefree numbers (A013929).
%K A240111 nonn
%O A240111 1,1
%A A240111 _Vladimir Shevelev_, Apr 01 2014
%E A240111 More terms from _Peter J. C. Moses_, Apr 02 2014