cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240112 Numbers for which the values of the Dedekind psi function (A001615) are greater than the values of the infinitary Dedekind psi function (A049417).

This page as a plain text file.
%I A240112 #33 Feb 13 2025 08:27:09
%S A240112 4,9,12,16,18,20,25,28,36,44,45,48,49,50,52,60,63,64,68,75,76,80,81,
%T A240112 84,90,92,98,99,100,108,112,116,117,121,124,126,132,140,144,147,148,
%U A240112 150,153,156,162,164,169,171,172,175,176,180,188,192,196,198,204,207
%N A240112 Numbers for which the values of the Dedekind psi function (A001615) are greater than the values of the infinitary Dedekind psi function (A049417).
%C A240112 The first term of A072587 that is not in this sequence is 72.
%C A240112 On the set of the nonsquarefree numbers (A013929) it is complement to A240111.
%C A240112 The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 2, 29, 284, 2845, 28527, 285352, 2853422, 28534455, 285344362, 2853443344, ... . Apparently, the asymptotic density of this sequence exists and equals 0.2853443... . - _Amiram Eldar_, Feb 13 2025
%H A240112 Amiram Eldar, <a href="/A240112/b240112.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Peter J. C. Moses)
%t A240112 f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct > Times @@ f1 @@@ fct]; Select[Range[250], q] (* _Amiram Eldar_, Feb 13 2025 *)
%o A240112 (PARI) isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) > prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ _Amiram Eldar_, Feb 13 2025
%Y A240112 Cf. A001615, A013929, A049417, A072587, A240111.
%K A240112 nonn
%O A240112 1,1
%A A240112 _Vladimir Shevelev_, Apr 01 2014
%E A240112 More terms from _Peter J. C. Moses_, Apr 02 2014