This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240117 #14 Jan 26 2019 14:27:31 %S A240117 1,3,3,3,4,4,6,7,7,8,8,12,12,13,14,14,19,20,20,21,22,27,28,29,30,31, %T A240117 38,39,40,41,42,50,51,52,54,55,63,65,66,68,69,79,80,82,84,85,96,98,99, %U A240117 101,103,114,116,118,120,122,135,137,139,141,143,157,159,161 %N A240117 Schoenheim lower bound L(n,6,2). %H A240117 Colin Barker, <a href="/A240117/b240117.txt">Table of n, a(n) for n = 6..1000</a> %H A240117 D. Gordon, G. Kuperberg and O. Patashnik, <a href="http://arxiv.org/abs/math/9502238">New constructions for covering designs</a>, arXiv:math/9502238 [math.CO], 1995. %F A240117 Empirical g.f.: x^6*(x^35 -x^31 -x^30 +2*x^26 +x^23 +x^20 -x^18 +x^17 +x^16 +x^13 -x^12 +2*x^11 +x^7 -x^5 +x^4 +2*x +1) / ( -x^36 +x^35 +x^31 -x^30 +x^6 -x^5 -x +1). %t A240117 schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb]; %t A240117 Table[schoenheim[n, 6, 2], {n, 6, 100}] (* _Jean-François Alcover_, Jan 26 2019, from PARI *) %o A240117 (PARI) schoenheim(n, k, t) = { %o A240117 my(lb = 1); %o A240117 n += 1-t; k += 1-t; %o A240117 while(t>0, %o A240117 lb = ceil((lb*n)/k); %o A240117 t--; n++; k++ %o A240117 ); %o A240117 lb %o A240117 } %o A240117 s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 2))); s %Y A240117 Cf. A240115, A240116, A240118, A240119. %Y A240117 Cf. A011975, A036831, A036832, A036833, A036834, A036835, A036836. %K A240117 nonn %O A240117 6,2 %A A240117 _Colin Barker_, Apr 01 2014