This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240118 #14 Jan 26 2019 14:27:40 %S A240118 1,4,5,7,11,14,18,27,32,37,54,61,68,94,103,116,147,163,180,221,240, %T A240118 260,319,342,366,438,465,500,581,619,658,756,800,844,968,1016,1066, %U A240118 1210,1265,1329,1485,1555,1627,1805,1882,1960,2173,2257,2343,2582,2673,2778 %N A240118 Schoenheim lower bound L(n,5,3). %H A240118 Colin Barker, <a href="/A240118/b240118.txt">Table of n, a(n) for n = 5..1000</a> %H A240118 D. Gordon, G. Kuperberg and O. Patashnik, <a href="http://arxiv.org/abs/math/9502238">New constructions for covering designs</a>, arXiv:math/9502238 [math.CO], 1995. %t A240118 schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb]; %t A240118 Table[schoenheim[n, 5, 3], {n, 5, 100}] (* _Jean-François Alcover_, Jan 26 2019, from PARI *) %o A240118 (PARI) schoenheim(n, k, t) = { %o A240118 my(lb = 1); %o A240118 n += 1-t; k += 1-t; %o A240118 while(t>0, %o A240118 lb = ceil((lb*n)/k); %o A240118 t--; n++; k++ %o A240118 ); %o A240118 lb %o A240118 } %o A240118 s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 3))); s %Y A240118 Cf. A240115, A240116, A240117, A240119. %Y A240118 Cf. A011975, A036831, A036832, A036833, A036834, A036835, A036836. %K A240118 nonn %O A240118 5,2 %A A240118 _Colin Barker_, Apr 01 2014