This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240119 #20 Jan 26 2019 14:27:44 %S A240119 1,4,4,6,7,11,14,18,19,30,32,37,42,57,64,70,77,104,112,121,130,167, %T A240119 178,194,205,248,267,286,301,362,378,401,425,494,520,547,574,667,697, %U A240119 728,759,870,904,948,984,1105,1153,1202,1242,1394,1438,1492,1547,1711 %N A240119 Schoenheim lower bound L(n,6,3). %H A240119 Colin Barker, <a href="/A240119/b240119.txt">Table of n, a(n) for n = 6..1000</a> %H A240119 D. Gordon, G. Kuperberg and O. Patashnik, <a href="http://arxiv.org/abs/math/9502238">New constructions for covering designs</a>, arXiv:math/9502238 [math.CO], 1995. %t A240119 schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb]; %t A240119 Table[schoenheim[n, 6, 3], {n, 6, 100}] (* _Jean-François Alcover_, Jan 26 2019, from PARI *) %o A240119 (PARI) schoenheim(n, k, t) = { %o A240119 my(lb = 1); %o A240119 n += 1-t; k += 1-t; %o A240119 while(t>0, %o A240119 lb = ceil((lb*n)/k); %o A240119 t--; n++; k++ %o A240119 ); %o A240119 lb %o A240119 } %o A240119 s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 3))); s %Y A240119 Cf. A240115, A240116, A240117, A240118. %Y A240119 Cf. A011975, A036831, A036832, A036833, A036834, A036835, A036836. %K A240119 nonn %O A240119 6,2 %A A240119 _Colin Barker_, Apr 01 2014