This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240128 #14 Oct 03 2024 11:21:26 %S A240128 1,1,1,1,1,1,1,1,2,2,2,1,2,2,1,3,4,4,4,3,3,4,4,5,12,9,14,13,13,16,17, %T A240128 30,34,33,34,37,50,57,64,73,99,101,114,125,141,187,193,226,264,286, %U A240128 326,365,456,506,565,655,742,809,911,1071,1233,1392,1506,1744,2046 %N A240128 Number of partitions of n such that the sum of cubes of the parts is a cube. %H A240128 Alois P. Heinz, <a href="/A240128/b240128.txt">Table of n, a(n) for n = 0..200</a> (terms n = 1..147 from Charles R Greathouse IV) %e A240128 a(17) counts these 4 partitions: [17], [4,3,3,1,1,1,1,1,1,1], [4,3,2,2,2,2,1,1], [3,3,3,3,2,2,1]. %t A240128 f[x_] := x^(1/3); z = 26; ColumnForm[t = Map[Select[IntegerPartitions[#], IntegerQ[f[Total[#^3]]] &] &, Range[z]] ](* shows the partitions *) %t A240128 t2 = Map[Length[Select[IntegerPartitions[#], IntegerQ[f[Total[#^2]]] &]] &, Range[40]] (* A240128 *) (* _Peter J. C. Moses_, Apr 01 2014 *) %o A240128 (PARI) a(n)=my(s); forpart(v=n, s+=ispower(sum(i=1, #v, v[i]^3),3)); s \\ _Charles R Greathouse IV_, Mar 06 2017 %Y A240128 Cf. A240127. %K A240128 nonn %O A240128 0,9 %A A240128 _Clark Kimberling_, Apr 02 2014 %E A240128 a(0)=1 prepended by _Alois P. Heinz_, Oct 03 2024