cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240148 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

This page as a plain text file.
%I A240148 #6 Jun 02 2025 09:40:08
%S A240148 3,5,11,25,62,144,329,775,1781,4150,9625,22243,51656,119768,277454,
%T A240148 643440,1492066,3458520,8019402,18594916,43110992,99960080,231775985,
%U A240148 537393625,1246028348,2889126804,6698837457,15532273640,36014074118
%N A240148 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
%C A240148 Column 2 of A240153
%H A240148 R. H. Hardin, <a href="/A240148/b240148.txt">Table of n, a(n) for n = 1..210</a>
%F A240148 Empirical: a(n) = 3*a(n-2) +14*a(n-3) +5*a(n-4) -28*a(n-5) -89*a(n-6) -50*a(n-7) +93*a(n-8) +303*a(n-9) +214*a(n-10) -113*a(n-11) -561*a(n-12) -468*a(n-13) -47*a(n-14) +584*a(n-15) +499*a(n-16) +142*a(n-17) -359*a(n-18) -96*a(n-19) -23*a(n-20) +128*a(n-21) -102*a(n-22) -99*a(n-23) -119*a(n-24) +32*a(n-25) +82*a(n-26) +113*a(n-27) +50*a(n-28) -7*a(n-29) -42*a(n-30) -20*a(n-31) +a(n-32) +4*a(n-33) +a(n-34) for n>36
%e A240148 Some solutions for n=4
%e A240148 ..3..3....3..3....3..2....3..2....2..2....3..3....3..3....3..3....2..2....2..2
%e A240148 ..2..2....2..1....3..2....3..1....0..2....2..1....2..1....2..1....0..2....0..2
%e A240148 ..3..1....0..2....0..3....2..2....0..3....3..2....3..2....3..2....0..3....0..2
%e A240148 ..2..1....3..2....0..3....3..1....2..2....0..2....3..2....3..1....0..3....0..2
%K A240148 nonn
%O A240148 1,1
%A A240148 _R. H. Hardin_, Apr 02 2014