A240175 Number of partitions of n such that the least part is less than its multiplicity.
0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 24, 32, 47, 60, 84, 110, 148, 191, 254, 323, 423, 535, 687, 864, 1100, 1371, 1726, 2141, 2669, 3290, 4075, 4990, 6136, 7481, 9137, 11087, 13471, 16264, 19659, 23641, 28438, 34060, 40801, 48676, 58074, 69049, 82064, 97246
Offset: 0
Examples
a(8) counts these 12 partitions: 611, 5111, 4211, 41111, 3311, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}](* A240175 *) Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}](* A188216 *) Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}](* A096403 *) Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *) Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)