This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240176 #9 Apr 18 2014 00:58:28 %S A240176 1,0,1,1,1,2,3,3,5,5,8,10,13,15,21,25,31,39,50,59,75,89,111,134,164, %T A240176 194,240,285,344,410,493,582,699,824,981,1157,1369,1606,1901,2223, %U A240176 2613,3054,3579,4166,4871,5658,6590,7645,8877,10264,11900,13733,15868 %N A240176 Number of partitions of n such that (least part) > (multiplicity of least part). %F A240176 a(n) + A240175(n) + A096403(n) = A000041(n), for n >= 0. %e A240176 a(8) counts these 5 partitions: 8, 61, 53, 44, 332. %t A240176 z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}] (* A240175 *) %t A240176 t2 = Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}] (* A188216 *) %t A240176 t3 = Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}] (* A096403 *) %t A240176 t4 = Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *) %t A240176 t5 = Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *) %Y A240176 Cf. A188216, A096403, A240175, A240177. %K A240176 nonn,easy %O A240176 0,6 %A A240176 _Clark Kimberling_, Apr 02 2014