cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240177 Number of partitions of n such that (least part) >= (multiplicity of least part).

This page as a plain text file.
%I A240177 #8 Apr 18 2014 00:58:12
%S A240177 1,1,1,2,3,4,5,8,10,14,18,24,30,41,51,66,83,106,131,167,204,257,315,
%T A240177 391,475,587,710,869,1049,1275,1529,1852,2213,2662,3173,3796,4506,
%U A240177 5373,6356,7544,8900,10523,12373,14585,17101,20085,23494,27508,32087,37471
%N A240177 Number of partitions of n such that (least part) >= (multiplicity of least part).
%F A240177 a(n) = A096403(n) + A240176(n), for n >= 0.
%e A240177 a(6) counts these 5 partitions:  6, 51, 42, 33, 321.
%t A240177 z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240175 *)
%t A240177 t2 = Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}] (* A188216 *)
%t A240177 t3 = Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}] (* A096403 *)
%t A240177 t4 = Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)
%t A240177 t5 = Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)
%Y A240177 Cf. A188216, A096403, A240175, A240176.
%K A240177 nonn,easy
%O A240177 0,4
%A A240177 _Clark Kimberling_, Apr 02 2014