A240179 Number of partitions of n such that (least part) <= (multiplicity of greatest part).
0, 1, 1, 2, 4, 5, 8, 11, 17, 23, 33, 43, 61, 79, 108, 140, 187, 238, 314, 397, 513, 648, 826, 1032, 1307, 1622, 2029, 2508, 3113, 3821, 4713, 5754, 7048, 8569, 10431, 12618, 15290, 18413, 22193, 26628, 31954, 38184, 45639, 54340, 64694, 76780, 91077, 107732
Offset: 0
Examples
a(6) counts these 8 partitions: 51, 411, 321, 3111, 222, 2211, 21111, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}] (* A240178 *) Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *) Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *) Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}] (* A240178, n>0 *) Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)
Comments