This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240183 #9 Apr 12 2014 16:22:02 %S A240183 0,1,0,0,2,0,2,0,3,3,4,2,9,3,10,10,17,11,26,19,36,33,48,47,79,71,101, %T A240183 109,149,151,215,216,293,318,404,443,575,611,773,864,1068,1175,1458, %U A240183 1609,1964,2210,2642,2970,3577,3995,4753,5369,6332,7138,8414,9476 %N A240183 Number of partitions of n such that (greatest part) = (multiplicity of least part). %F A240183 A240178(n) + a(n) + A240184(n) = A000041(n) for n >= 0. %e A240183 a(8) counts these 3 partitions: 41111, 32111, 22211. %t A240183 z = 60; f[n_] := f[n] = IntegerPartitions[n]; %t A240183 t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}] (* A240178 except for n=0 *) %t A240183 t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *) %t A240183 t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *) %t A240183 t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *) %t A240183 t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *) %Y A240183 Cf. A240178, A240182, A240184, A240179, A000041. %K A240183 nonn,easy %O A240183 0,5 %A A240183 _Clark Kimberling_, Apr 02 2014